Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Norwegian gas measurement technology goes into space

28.08.2007
The Norwegian technology that is to monitor astronauts’ “indoor” climate has gone into space. In the future, similar equipment may help to improve the climate of workplaces on Earth itself.

The “Endeavour” space shuttle was recently launched carrying the apple of the eye of SINTEF scientist Atle Honne; gas measurement equipment and associated software for checking astronauts’ “indoor” climate.

In a few weeks, the 59-year-old SINTEF senior scientist will sit in a control room at NASA in Houston, where he will check that everything is working properly when the equipment is installed in the International Space Station (ISS).

Tests on board the Space Station

ANITA will be tested on board the ISS for ten days. If the instrument passes its exams, the next version could become the space station’s regular air-quality monitoring system.

However, the equipment will not be switched off when the ten-day test phase is over. Since it is already installed, NASA will use it to acquire better air-quality data in the ISS, in the first instance for six months.

“Down-to earth” benefits too

The measurement system, known as ANITA, is the result of a cooperative project between SINTEF and the German company Kayser-Threde GmbH. But although Honne has been project manager on the Norwegian side since day one of the project, he is no “space freak”.

“My involvement, and SINTEF’s, is due to the fact that the measurement technology involved is also highly suitable for use on Earth. It can be used for everything from monitoring industrial processes to checking the indoor climate of submarines and other environments where such checks are important”, says Honne.

All the same, it is a feather in his cap that the system should have become part of the space adventure.

“It is the most demanding market you can image”, says Honne proudly.

Makes countermeasures possible

The idea of ANITA is to prevent astronauts in the Space Station from having to breathe in unpleasant, toxic or carcinogenic gases.

Just as on Earth, gases diffuse out of walls, furnishings and equipment. Others may come from leakages or overheating, while the human body also emits gases. ANITA will enable astronauts to adopt countermeasures in the event of leaks or failures of the air purification system.

The gas monitoring equipment already installed on board the ISS measures only a few gases frequently and rapidly. Others are checked with a reaction time measured in hours, while some can only be measured after air samples have been returned to Earth.

Rapid but sensitive

ANITA is the leading candidate to take over the measurement programme on a permanent basis.

The wholly automatic system is sensitive, recognises and indicates the concentrations of individual gases, works rapidly and can present its results without delay. It “sees” the gases by means of beams of infrared light. Honne has developed the methods that the system uses to interpret its measurement data.

Back on Earth, Honne regards an ideal working day as one during which he has helped to produce results that “improve human health and make a few companies more wealthy, while giving me some interesting work to do”.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>