Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fisheries forecasting in the Niger inner delta

27.03.2002


The hydrological regime of the inner delta of the River Niger, situated in Mali, is subject to strong annual and indeed intra-annual variability. This delta ecosystem has a characteristic feature, a three-phase cycle. The first, a period of flood, starts in July marking the beginning of the cycle; then, after several months of rising water-levels, the flood recedes, between November and January; finally, a period of low water prevails between March and June.



The river’s various fish species are adapted to this cycle of alternating conditions. Feeding, growth and mortality depend on that rhythm. The flood scatters the fish away from the river bed and brings abundant food. It provides refuge areas, environments where reproduction can take place undisturbed. Growth then proceeds until the waters are in recession, a period of high natural mortality. Fishing effort has to follow the rhythm set by the succession of flood and recession. Most campaigns are concentrated in the period of flood retreat which heralds the return of fish into the fluvial zone and their unavoidable movement through the channels fishermen know well – and when their capturability is highest. Activity diminishes and the season ends with the onset of the next flood, when again the fish are dispersed into flooded areas.

Fishing activity is therefore dependent on the hydrological seasons. Two measurable hydrological parameters can express these: rainfall and river discharge. IRD scientists have sought to determine the extent to which these two variables can provide the basis for a model for predicting annual capturable fish stocks. The team focused first on defining which of the indicators was most pertinent, secondly on finding the number of years’ worth of data necessary for obtaining a reliable forecast.


No significant relationship was found between fishing and rainfall.1 This established, the investigation turned to the other parameter, the Niger river discharge. It appeared to correlate well with the volume of catches, which increased in proportion to the flood intensity. Two hydrological stations in Mali have been recording discharge rates since the beginning of the XXth century: Mopti, in the middle zone of the delta, and Koulikoro, upstream of it. Both these stations supply the necessary data, but Koulikoro’s site further upstream is more convenient. The Niger’s bed there is narrower and discharges are greater, rendering small changes easier to detect and record with finer accuracy. The flood peak occurs in September at that point, one month earlier than at Mopti. The Koulikoro station can hence also provide data sooner and potential catch estimates can be calculated earlier.

An important finding is that only two years of data are required for a reliable prediction to be made. An underlying biological factor is that 70% of the fish caught in the inner delta are less than a year old indicating that they arrived with the last flood, or with the previous one at the earliest.

The model in the end is extremely simple and involves just two easily recorded variables: the average discharge between July and September of the year in course and the same parameter between July and December of the previous year. So constructed it can predict the catches from September, 2 months before the start of the fishing season which runs from November to May. It can also bring into relief the immediate impact of any unusually smaller-scale flood. An intensive catch rate in one fishing season reduces the fish to a population composed mainly of juveniles (less than a year old). If a flood is not strong enough to allow renewal, the following season’s stocks will be depleted and the catches poorer.

This new forecasting model has proved to be extremely useful for giving warnings of insufficiency or overabundance of fish resources without the need for complex modelling systems. Its predictions could be published in the newsletter of the Fisheries observatory and distributed regularly throughout the region. With further development, the model could in the future help define –and hence predict- the places over the delta where fish are most abundant. It could then become an important tool in overall fisheries management.

1 Probably owing to exhaustion of the groundwater sources; any rainfall would be taken up in replenishing the water table rather than in increasing water volume in the River Niger.

Marie-Lise Sabrie | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>