Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winter moth proves able to adjust to climate change

18.06.2007
Winter moths show to be able to adjust to the changing temperatures of our changing climate. With this discovery Margriet van Asch of the Netherlands Institute of Ecology earned her doctoral degree today.

The temperature determines the day winter moths hatch out and that temperature sensitivity is hereditary. Through selection only the most adjusted eggs remain, meaning those that nowadays hatch at the same time as the oak buds burst – as young oak leaves are their food source. Such research should be undertaken for more species to improve the predictions of climate-change consequences.

Since the climate pattern in winter and spring is changing, already for some 35 years, the winter moth hatched earlier and earlier. In warm years part of the caterpillars even appeared before the oak leaves did. Young oak leaves are the food source for this species’ caterpillars and without them they die within days. The winter moth reacted too sharply on climate change in the Netherlands. Now it is found out that they are able to adjust to their new situation, so to their new climate. They did just that during the last ten years. NIOO ecologist Margriet van Asch explains: “At the same temperature eggs now hatch five to ten days later. The result is that they are again better synchronized with the oak leaves.”

Van Asch and colleagues researched the winter moth in nature and in climate rooms, under normal and under raised temperatures. This way, they can predict how these moths will adapt to the changing climate. “This change can not only be witnessed in our experiments, but also in the woods outside,” Van Asch reveals. “What makes them able to adjust, is the presence of sufficient genetic variation in ‘egg hatching moment’ within the moth population.”

The winter moth appears to cope with restricted climate change. This species adjusts quickly enough when compared to one of the moderate climate scenarios. “But we have to collect the same sort of information for other species and ecosystems,” argues project leader Marcel Visser. “Only then we can state by how many degrees the temperature may change without causing serious problems. This will give politicians something to base their target on, instead of that arbitrary 2 degrees Celsius warming.”

The winter moth Operophtera brumata lives in the woods. There they form a major food source for many songbirds like great tit and pied flycatcher. But these birds still have a problem. Their food source may be able to adjust and consequently survive in higher numbers, but they cannot. The caterpillars still peak earlier than their chicks and climate-induced asynchrony is still the reality for these birds.

This part of the winter moth project is funded by the Netherlands Organisation for Scientific Research.

The Netherlands Institute of Ecology (NIOO-KNAW) studies the ecology of land, freshwater and brackish and seawater. The Centre for Terrestrial Ecology studies life on land. The NIOO employs about 250 people and is the largest research institute of the Royal Netherlands Academy of Arts and Science (KNAW).

Froukje Rienks | alfa
Further information:
http://www.nioo.knaw.nl/

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>