Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winter moth proves able to adjust to climate change

18.06.2007
Winter moths show to be able to adjust to the changing temperatures of our changing climate. With this discovery Margriet van Asch of the Netherlands Institute of Ecology earned her doctoral degree today.

The temperature determines the day winter moths hatch out and that temperature sensitivity is hereditary. Through selection only the most adjusted eggs remain, meaning those that nowadays hatch at the same time as the oak buds burst – as young oak leaves are their food source. Such research should be undertaken for more species to improve the predictions of climate-change consequences.

Since the climate pattern in winter and spring is changing, already for some 35 years, the winter moth hatched earlier and earlier. In warm years part of the caterpillars even appeared before the oak leaves did. Young oak leaves are the food source for this species’ caterpillars and without them they die within days. The winter moth reacted too sharply on climate change in the Netherlands. Now it is found out that they are able to adjust to their new situation, so to their new climate. They did just that during the last ten years. NIOO ecologist Margriet van Asch explains: “At the same temperature eggs now hatch five to ten days later. The result is that they are again better synchronized with the oak leaves.”

Van Asch and colleagues researched the winter moth in nature and in climate rooms, under normal and under raised temperatures. This way, they can predict how these moths will adapt to the changing climate. “This change can not only be witnessed in our experiments, but also in the woods outside,” Van Asch reveals. “What makes them able to adjust, is the presence of sufficient genetic variation in ‘egg hatching moment’ within the moth population.”

The winter moth appears to cope with restricted climate change. This species adjusts quickly enough when compared to one of the moderate climate scenarios. “But we have to collect the same sort of information for other species and ecosystems,” argues project leader Marcel Visser. “Only then we can state by how many degrees the temperature may change without causing serious problems. This will give politicians something to base their target on, instead of that arbitrary 2 degrees Celsius warming.”

The winter moth Operophtera brumata lives in the woods. There they form a major food source for many songbirds like great tit and pied flycatcher. But these birds still have a problem. Their food source may be able to adjust and consequently survive in higher numbers, but they cannot. The caterpillars still peak earlier than their chicks and climate-induced asynchrony is still the reality for these birds.

This part of the winter moth project is funded by the Netherlands Organisation for Scientific Research.

The Netherlands Institute of Ecology (NIOO-KNAW) studies the ecology of land, freshwater and brackish and seawater. The Centre for Terrestrial Ecology studies life on land. The NIOO employs about 250 people and is the largest research institute of the Royal Netherlands Academy of Arts and Science (KNAW).

Froukje Rienks | alfa
Further information:
http://www.nioo.knaw.nl/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>