Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winter moth proves able to adjust to climate change

18.06.2007
Winter moths show to be able to adjust to the changing temperatures of our changing climate. With this discovery Margriet van Asch of the Netherlands Institute of Ecology earned her doctoral degree today.

The temperature determines the day winter moths hatch out and that temperature sensitivity is hereditary. Through selection only the most adjusted eggs remain, meaning those that nowadays hatch at the same time as the oak buds burst – as young oak leaves are their food source. Such research should be undertaken for more species to improve the predictions of climate-change consequences.

Since the climate pattern in winter and spring is changing, already for some 35 years, the winter moth hatched earlier and earlier. In warm years part of the caterpillars even appeared before the oak leaves did. Young oak leaves are the food source for this species’ caterpillars and without them they die within days. The winter moth reacted too sharply on climate change in the Netherlands. Now it is found out that they are able to adjust to their new situation, so to their new climate. They did just that during the last ten years. NIOO ecologist Margriet van Asch explains: “At the same temperature eggs now hatch five to ten days later. The result is that they are again better synchronized with the oak leaves.”

Van Asch and colleagues researched the winter moth in nature and in climate rooms, under normal and under raised temperatures. This way, they can predict how these moths will adapt to the changing climate. “This change can not only be witnessed in our experiments, but also in the woods outside,” Van Asch reveals. “What makes them able to adjust, is the presence of sufficient genetic variation in ‘egg hatching moment’ within the moth population.”

The winter moth appears to cope with restricted climate change. This species adjusts quickly enough when compared to one of the moderate climate scenarios. “But we have to collect the same sort of information for other species and ecosystems,” argues project leader Marcel Visser. “Only then we can state by how many degrees the temperature may change without causing serious problems. This will give politicians something to base their target on, instead of that arbitrary 2 degrees Celsius warming.”

The winter moth Operophtera brumata lives in the woods. There they form a major food source for many songbirds like great tit and pied flycatcher. But these birds still have a problem. Their food source may be able to adjust and consequently survive in higher numbers, but they cannot. The caterpillars still peak earlier than their chicks and climate-induced asynchrony is still the reality for these birds.

This part of the winter moth project is funded by the Netherlands Organisation for Scientific Research.

The Netherlands Institute of Ecology (NIOO-KNAW) studies the ecology of land, freshwater and brackish and seawater. The Centre for Terrestrial Ecology studies life on land. The NIOO employs about 250 people and is the largest research institute of the Royal Netherlands Academy of Arts and Science (KNAW).

Froukje Rienks | alfa
Further information:
http://www.nioo.knaw.nl/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>