Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding what causes rain

06.06.2007
Weather models are not good at predicting rain. Particularly in hilly terrain, this can lead to great damage arising from late warnings of floods, or even none at all.

From June 1 to September 1, 2007 Delft University of Technology is participating in a major international experiment in Germany’s Black Forest, to learn more about what causes rain. Aircraft and an airship are to be used alongside ground-based observatories. Satellites will be used to gather the large-scale information.

The creation of rain is the result of a variety of physical processes. These processes influence each other and play out both at an extremely small scale (several micrometres) and on a very large one (100 kilometres). The spatial scale of weather models is a few kilometres, and physical processes which occur at a smaller scale have to be approximated. Cloud formation is an example of this. The complexity and differences in scale make weather modelling inaccurate in predicting the time and place of a downpour, and the quantity of rain which will ultimately fall.

Black Forest

The Black Forest has a lot of thunderstorms in summer, and the discrepancies between predictions and actual rainfall are enormous. This makes it an ideal natural ‘laboratory’. Spread over an area of 100 by 100 km, five temporary observatories are being set up with state-of-the-art remote sensing equipment to measure the atmosphere continuously. In July nine aircraft and an airship will also be deployed to carry out detailed measurements above, below and in the clouds. Satellites will be used to gather the large-scale data.

TU Delft

On June 4 TU Delft moved the TARA (Transportable Atmospheric RAdar) atmosphere radar to Germany. The instrument will be sited atop the Hornisgrinde (one of the highest peaks in the Black Forest). There it will measure the atmosphere together with other instruments (LIDARs [Light Detection And Ranging], radiometers, cloud radars). The TU Delft will also have access to two research aircraft (one French, the other German) which will fly through the clouds to measure their physical properties. These aircraft have been specially assigned to two Delft PhD candidates.

Within this international Convective and Orographically-induced Precipitation Study (COPS), TU Delft will be mainly concerned with the question as to how cloud and rain formation is influenced by dust particles in the atmosphere.

Climate models

The influence of the aerosol-cloud interaction on the earth’s radiation balance is also one of the greatest unknowns in climate models. The data collected during COPS will be suitable for improving models describing the relationship between atmospheric dynamics and cloud formation.

Schedule

-TARA will be transported to Germany on June 4;
-TARA will be operational on June 11;
-Intensive measurement will be carried out from June 24 to August 1, with coordination between ground and aircraft measurement;

-From August 1 TARA will be used in standard mode to build up a sufficiently statistically representative dataset routinely.

Roy Meijer | alfa
Further information:
http://www.tudelft.nl

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>