Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from the UGR are using olive stones to depollute industrial sewage water

24.05.2007
A question arises whenever olive oil is obtained: what can we do with its agricultural residues, such as olive vegetable water, browse leaves, or the solid waste known as ‘alpeorujo’?

A study carried out by Dr. Germán Tenorio Rivas, a member of the research group “Solids concentration and bioremediation” from the Department of Chemical Engineering of the University of Granada (Universidad de Granada[http://www.ugr.es]) has found an interesting use for the apparently useless olive stones: they eliminate hard metals –chrome, to be precise- by biosorption in sewage water from industries such as painting, tannery or galvanizing industry.

Biosorption is a physical and chemical process, which enables certain types of biomass –for example, agricultural residues- to retain the hard metals found in industrial sewage water. The main advantage of this research is that olive stones are used. Germán Tenorio points out: “We don't need to bring it from anywhere else, we already produce it here, and we produce a great amount. It is also clean and cheap”.

The process of biosorption of chrome by olive stones stems from their capacity to retain metallic ions in their surface. As the UGR scientist explains: “This is due to the difference in electrical charges. Olive stones are negatively charged, whereas metal is positively charged. That is the reason why they come together, thanks to ionic attraction”.

No mud

The process of biosorption can be a good substitute for other processes such as precipitation which are far more complex and expensive. The aforementioned researcher explains : “Unlike these processes, the use of olive stones as a biosorption mechanism produces no subproducts which are then difficult to deal with, for instance, metal concentrated mud”. Two products are obtained during this process: water free of pollutants and the olive stones with the retained metal. “This metal can be used later”. The olive stones can also be used as biomass to obtain energy, as they are agricultural residues.

The research carried out in the University of Granada means a step forward in the field of the biosorption of metals. It will be the basis for the development of new technologies to make it possible to depollute by removing metals in water residues.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Ecology, The Environment and Conservation:

nachricht Calculating recharge of groundwater more precisely
28.02.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>