Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Shall We Do With Nuclear Waste?

12.03.2002


There are two ways of dealing with the problem of nuclear waste. The first one is the easiest but not the most sensible: you can simply bury nuclear waste products and try to forget about them. However, this way does not seem to be the most rational. It seems much more attractive to try to derive some benefit from the situation. In this case it is worth extracting the compounds that could be used in future from the whole mass of nuclear wastes. In the first instance, these are non-burnt uranium and plutonium. These components of nuclear fuel can be returned into nuclear reactors. Moreover, it is necessary to extract radionuclides, which can find their further application because these compounds of nuclear wastes, as the scientists say, "contain the whole periodic table". And all the remaining nuclear substances should be divided into fractions according to their lifetime: long-lived, short-lived, and stable. How to solve the task?



According to the existing technology all this nuclear rubbish should be dissolved on the first stage and only then the useful compounds are extracted from the solution in succession. An organic solvent is usually used for this purpose. However, the extractant used in industry does not identify many compounds.

Chemists and technologists under the supervision of Professor Zilberman have thought up how to divide nuclear waste products into separate fractions. The researchers could extract from the whole mass not only pure uranium and plutonium but also extremely dangerous radionuclides separately. The secret is in the addition to the extractant discovered by the scientists. It enables extracting all the necessary compounds effectively and selectively on particular stages of processing. It is also very important that the technology can be applied to the industrial process using standard equipment that should be just modified.


The tests proved that the new technology enabled extracting uranium, plutonium, neptunium, technetium, transplutonium elements, and also stable molybdenum and zirconium from the waste materials of nuclear power stations. Then the extracted radionuclides can be used or buried.

Tatiana Pitchugina | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>