Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Shall We Do With Nuclear Waste?

12.03.2002


There are two ways of dealing with the problem of nuclear waste. The first one is the easiest but not the most sensible: you can simply bury nuclear waste products and try to forget about them. However, this way does not seem to be the most rational. It seems much more attractive to try to derive some benefit from the situation. In this case it is worth extracting the compounds that could be used in future from the whole mass of nuclear wastes. In the first instance, these are non-burnt uranium and plutonium. These components of nuclear fuel can be returned into nuclear reactors. Moreover, it is necessary to extract radionuclides, which can find their further application because these compounds of nuclear wastes, as the scientists say, "contain the whole periodic table". And all the remaining nuclear substances should be divided into fractions according to their lifetime: long-lived, short-lived, and stable. How to solve the task?



According to the existing technology all this nuclear rubbish should be dissolved on the first stage and only then the useful compounds are extracted from the solution in succession. An organic solvent is usually used for this purpose. However, the extractant used in industry does not identify many compounds.

Chemists and technologists under the supervision of Professor Zilberman have thought up how to divide nuclear waste products into separate fractions. The researchers could extract from the whole mass not only pure uranium and plutonium but also extremely dangerous radionuclides separately. The secret is in the addition to the extractant discovered by the scientists. It enables extracting all the necessary compounds effectively and selectively on particular stages of processing. It is also very important that the technology can be applied to the industrial process using standard equipment that should be just modified.


The tests proved that the new technology enabled extracting uranium, plutonium, neptunium, technetium, transplutonium elements, and also stable molybdenum and zirconium from the waste materials of nuclear power stations. Then the extracted radionuclides can be used or buried.

Tatiana Pitchugina | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>