Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study sheds light on long-term effects of logging after wildfire

12.04.2007
Are severe reburns likely with or without logging?

A new study on the effects of timber harvest following wildfire shows that the potential for a recently burned forest to reburn can be high with or without logging. Recently published in the journal, Forest Ecology and Management, the study demonstrates that the likelihood of a severe reburn is affected by the timing – not just the amount – of fuel accumulation after fire.

The study examines fuel accumulation with and without logging after a large wildfire in the Blue Mountains of northeast Oregon. Three treatments were examined: commercial logging that removed only dead trees with value for wood products, commercial logging plus thinning that removed all dead trees larger than 4 inches in diameter, and unlogged sites.

The year after logging (3 years after the fire), sites that were logged and thinned had four times more fine fuels on the ground, as a result of logging residue, compared to unlogged sites. Those same sites also had fewer snags– which provide habitat for woodpeckers, owls, and other animals that nest in tree cavities – and contribute to large woody debris on the ground. However, logging activity caused no change in the litter or duff, the upper soil organic layers that also affect how a fire burns. The study was led by James McIver of Oregon State University and Roger Ottmar of the Pacific Northwest Research Station, U.S. Forest Service.

The investigators used a computer model to project how fuels and fire hazard would change over time. "Long-term research and monitoring are not always possible," says McIver. "Although we would rather have the long-term data, using a model allows us to estimate some of the future ecological effects."

The computer simulation showed that the difference in surface fuels between logged and unlogged units would persist for about 15 years. The simulation also showed that if a fire did start during this time, it would likely kill most young trees as the fire carried through either logged or unlogged stands, even though the logged stands had higher slash fuels. This is because other components of the fuel bed (grasses and shrubs) would contribute significantly to fire conditions, whether sites were initially logged or not.

"The exact nature of fuel accumulation over time is the key to understanding fire hazard," explains Ottmar. "Each forest, each fire, and each logging operation affects fuels differently, and variation exists within any forest stand. It is also important to consider the whole fuel bed when thinking about fire hazard in the future."

Model projections indicated that large fuels will increase over time in the unlogged forests as dead trees fall over, with up to three times greater fuel accumulation as compared to a wildfire area that has been logged. Although it would seem that any extra fuel would be a cause for concern, these large fuels do not carry fire well on the surface, and so do not tend to create conditions for crown fires. Rather, they will tend to cause long periods of heating on the ground.

"Wood can be fuel in the short term or the long term," says McIver, "but that's only part of the story. Wood is also wildlife habitat, and wood provides nutrients to the soil. Fire, ecological factors, and management objectives are all important. Our data show that there are no simple answers."

Sherri Richardson Dodge | EurekAlert!
Further information:
http://www.fs.fed.us/pnw/fera/news/newsletters/2007-feb.shtml

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Physicists have learned to change the wavelength of Tamm plasmons

24.01.2018 | Physics and Astronomy

When the eyes move, the eardrums move, too

24.01.2018 | Health and Medicine

Deaf children learn words faster than hearing children

24.01.2018 | Health and Medicine

VideoLinks Science & Research
Overview of more VideoLinks >>>