Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-lived deep-sea fishes imperiled by technology, overfishing

20.02.2007
Many commercially prized fish from the depths of the world's oceans are severely threatened by over-fishing and the species' ability to recover is constrained by the fishes' long lifespans and low reproductive success, a panel of experts said today at the annual meeting of the American Association of the Advancement of Science.

Some of the fish species living at depths greater than 500 meters take decades to reach breeding maturity, so there are no quick-fix remedies available to replenish the population, said Selina Heppell, a fisheries biologist from Oregon State University.

"The harvest of deep-sea fishes is a lot like the harvest of old-growth timber," Heppell said, "except we don't ‘replant' the fish. We have to depend on the fish to replenish themselves. And the habitat that used to provide them protection – the deep ocean – is now accessible to fishing because of new technologies."

Among the most recognized deep-sea species at-risk are orange roughy and Patagonian toothfish, better known as Chilean sea bass. In the deep ocean off the Pacific Northwest, sablefish – also known as black cod – are another depleted species. Deep-sea fishes grow slowly because of limited food sources and slower metabolisms and many don't reach sexual maturity for 30 to 40 years, Heppell said. The harvest of older fish may have an even greater impact on these threatened populations because older fish are more likely to breed successfully than younger fish.

"When you buy orange roughy at the store, you are probably purchasing a filet from a fish that is at least 50 years old," Heppell said. "Most people don't think of the implications of that. Perhaps we need a guideline that says we shouldn't eat fish that are as old as our grandmothers."

Most of the deep-sea fishes are in international waters, where there are no guidelines and protections – unlike within United States territorial waters. Most of these fish are caught by deep trawlers near seamounts, where they congregate because of food.

Technological advances have made targeting these fish easier, the panelists pointed out, because powerful ships can drag huge nets hundreds of feet below the surface. New refrigeration techniques, including "flash freezing," allow ships to range far out into the ocean for days at a time. And sophisticated global positioning systems (GPS) and fish finders can target schools of fish or seamounts with ease.

"One reason that many of these fish species were fished sustainably in the past is that we couldn't fish all of the places all of the time," Heppell said. "That isn't necessarily true anymore."

Heppell is a faculty member in the Department of Fisheries and Wildlife at Oregon State, where she studies fish dynamics, populations and life cycles. The deep-sea fishes are among the hardest to study for obvious reasons, she said, and additional research is critical to protect these species.

Long-lived fish usually have low reproductive rates, either because of low breeding success or high mortality. In the case of deep-sea fishes, both scenarios often play out.

In some species, such as sharks, the fish may only produce a handful of offspring and the chances of survival by an individual are low. In other species, including orange roughy and oreos, an individual fish produces thousands of eggs – most of which die through predation or starvation.

"One of the things we need to know more about is how the fish larvae get transported," Heppell said. "We don't know whether fish from different seamounts are genetically distinct or whether larvae from one seamount end up populating another. The odds against these fish are so high that, in a reproductive sense, they have to wait for the stars to align before they successfully produce offspring that will survive until maturity."

Natural and human-influenced climate factors including El Niño, the Pacific Decadal Oscillation and hypoxia zones all can influence shallow-water fishes' breeding and mortality rates, but deep-sea environments are usually stable. The deep sea is almost completely dark, very near freezing and has very little food – reasons for the fishes' slow growth and low productivity.

"Old fish don't necessarily need to breed every year," Heppell pointed out, "so when nature throws a bad reproductive year at them, the species can survive. But the point remains that you have to have older fish to replenish the stock when those bad years come."

Conversely, Heppell said, good years often can carry the population in a phenomenon known as "episodic recruitment." In studies of long-lived fish species, it isn't unusual to find a school with numerous 18-year-old fish, for example, but very few fish that are 17 or 19 years of age. Scientists can determine the age of fish through their otoliths, or ear bones, which regularly accumulate rings much like trees. Variations in the size of the rings can indicate ocean productivity that year.

Harvesting older fish lessens the likelihood of many productive breeding years, Heppell pointed out, and lengthens the time species need to recover.

"There are models that estimate the recovery time for some rockfish species is at least 200 years," Heppell said. "And we still don't know all of the factors that influence their survival."

Selina Heppell | EurekAlert!
Further information:
http://www.oregonstate.edu
http://www.fishbase.org/search.php

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>