Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could biomass be a clean fuel for the steel industry?

08.02.2007
Halving CO2 emissions by the steel industry by developing innovative processes is the objective set for the European ULCOS (Ultra Low CO2 Steelmaking) project involving CIRAD.

To this end, over the past two and a half years, the project has been pooling the research and development capacities of 47 partners in 15 European countries: steelmakers, builders, raw material suppliers, research laboratories and universities. The main European steelmakers are leading the project. The exploratory phase of the project, which ran for 18 months, was completed in March 2005, and the second phase is now under way.

Replacing fossil fuels with biomass, notably from forest plantations in the tropics, is the project's central theme. Two main points are being addressed: biomass availability from such plantations and the development of more efficient, less polluting processes for converting that biomass into charcoal, which is vital for steelmaking. CIRAD is contributing to this vast project through research on the production, supply and sustainable use of this woody biomass as a cleaner fuel source.

Brazil and central Africa are good candidates for biomass production

To supply such biomass in a sustainable way, it is necessary to assess the areas available for industrial-scale eucalyptus plantations. This fast-growing species could rapidly provide large quantities of biomass. As part of this assessment, researchers conducted a prospective study for the period up to 2050 of the socioeconomic and environmental constraints in various tropical countries. The following "candidates" were chosen to host such plantations: Brazil, with 46 million hectares available in 2050, and several central African countries, with 46 million hectares. More precisely, the zones concerned are the Brazilian states of Tocantins, Maranhão and Piaui, where the conditions are most suitable for forest plantations. In Africa, the zones concerned are Congo (South), the Democratic Republic of Congo (West), Angola (North and East), Zambia (West), Tanzania (West and South), Mozambique (North) and the Central African Republic (West and Centre). These zones have more than 1000 mm of rainfall a year over more than a third of their area, and a population density of fewer than 80 inhabitants/km2. The pressure on this land is thus low.

To establish indicators of high, sustained biomass production, CIRAD produced carbon, water and nutrient balances for eucalyptus plantations in Congo. The results showed that after a seven-year rotation, 36.7 t C/ha can be exported, ie the equivalent of 134.5 t of CO2 per ha. The change in land use from grasslands to eucalyptus plantations would enable permanent storage of 28.8 t C/ha (105.5 t CO2/ha) with 24.4 t C/ha in the biomass and 4.4 t C/ha in the litter, but 0 t C/ha in the soil. This change would affect the nitrogen balance, making it necessary to give the eucalyptus plantations appropriate fertilizers.

As for carbon flux within Brazilian plantations, it is twice as high as in Congolese plantations (20 t as opposed to 10 t of dry matter/year). Brazilian plantations thus have a much higher carbon sequestration potential than those in Congo.

Innovative thermochemical processes enabling lower CO2 emissions

As regards converting biomass into charcoal, researchers have been concentrating on innovative thermochemical processes such as high-pressure pyrolysis. The results showed that high pressure and slow heating improved fixed carbon yields after carbonization from 26 to 33%. These conditions favour conversion of the lignocellulose compounds in the biomass (cellulose, hemicellulose, lignin) into solid carbon for charcoal production. They also help reduce gas emissions in relation to conventional processes under atmospheric pressure. High-pressure pyrolysis generates 1.5 million tonnes (Mt) of CO2 for 1 Mt of charcoal, while pyrolysis under atmospheric pressure generates 2.5 Mt of CO2 for an identical amount of charcoal produced. Moreover, the yield gains achieved in terms of charcoal production help to reduce the areas required for planting.

CIRAD and its partners are continuing their research in Congo and Brazil in order to confirm some of the results obtained during the exploratory phase, notably carbon, water and nutrient balances. Once this has been done, conclusions can be drawn concerning sustainable biomass supplies. The second phase of the project will also look at how to optimize the charcoal produced in line with the steel industry's requirements. The initial results have shown that the type of wood used affects charcoal quality, and subsequent research should make it possible to draw up long-term strategies for improving eucalyptus clones with a view to efficient biomass use for steelmaking. Studies are also planned of selected zones, to confirm the technical, social and economic viability of forest plantations for high-quality charcoal production. Particular attention will be paid to transport infrastructures between the conversion sites and ports, a stage which remains one of the main constraints on the biomass supply chain.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=626

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>