Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storage of greenhouse gasses in Siberian peat moor

31.01.2007
Wet peat moorlands form a sustainable storage place for the greenhouse gas carbon dioxide but are also a source of the much stronger greenhouse gas methane.

According to Dutch researcher Wiebe Borren, peat moorlands will counteract the greenhouse effect under the present climatic conditions. If the climate becomes warmer, the greenhouse effect can temporarily be enhanced. Borren investigated the carbon exchange between West-Siberian peat moorlands and the atmosphere.

The West-Siberian peatlands have been formed over the past 10,000 years during the Holocene period and cover some one million square kilometres. Carbon is formed during the development of the peatland. Plants initially take this up in the form of carbon dioxide. Subsequently part of the dead plant material is stored under water-saturated, acid-free conditions. As the peat slowly breaks down, carbon is released again in the form of methane (CH4), which just like carbon dioxide is a greenhouse gas. Up until now it was not clear how peat moorland areas influenced the greenhouse effect.

Borren calculated the changes in the atmospheric supplies of carbon dioxide and methane using a 3D-model based on exchange fluxes due to peat formation over the past 9000 years. With this model he also simulated the effects of draining peatlands on CO2 emission and on climate change. When studying the effects on climate change, Borren took into account the northwards shift in bioclimate zones in West Siberia as a result of global warming. The results revealed that from the Holocene up until now, peat moorlands have counteracted the greenhouse effect by functioning as a net storage place for greenhouse gasses; more CO2 is stored than methane released, even if the stronger greenhouse effect of methane is allowed for.

Borren developed a new calculation method to determine the significance of peat moorlands for climate change. To date, limits on greenhouse gas emissions (Kyoto protocols) have been calculated on the basis of instantaneous emissions and not the gradually changing emissions, which is the case for woods and natural peatlands. With this new method the researcher could also clearly show that non-drained peatlands will eventually be extremely important net storage areas for greenhouse gasses from the atmosphere, even in the case of global warming.

Global warming ensures reversal

If global warming and the northward shift of bioclimate zones continue, however, then the peat moorlands will enhance the greenhouse effect says Borren. After about 250 years this effect will once again be reversed, as the increase in carbon dioxide uptake will then be greater than the increase in methane emissions. Drainage always contributes to a strengthening of the greenhouse effect. Borren therefore believes that the reclamation of peatlands will enhance global warming far more than the natural effects he describes in his thesis.

Wiebe Borren's research was funded by NWO.

Dr Wiebe Borren | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_6X6CNM_Eng
http://www.tno.nl

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>