Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storage of greenhouse gasses in Siberian peat moor

31.01.2007
Wet peat moorlands form a sustainable storage place for the greenhouse gas carbon dioxide but are also a source of the much stronger greenhouse gas methane.

According to Dutch researcher Wiebe Borren, peat moorlands will counteract the greenhouse effect under the present climatic conditions. If the climate becomes warmer, the greenhouse effect can temporarily be enhanced. Borren investigated the carbon exchange between West-Siberian peat moorlands and the atmosphere.

The West-Siberian peatlands have been formed over the past 10,000 years during the Holocene period and cover some one million square kilometres. Carbon is formed during the development of the peatland. Plants initially take this up in the form of carbon dioxide. Subsequently part of the dead plant material is stored under water-saturated, acid-free conditions. As the peat slowly breaks down, carbon is released again in the form of methane (CH4), which just like carbon dioxide is a greenhouse gas. Up until now it was not clear how peat moorland areas influenced the greenhouse effect.

Borren calculated the changes in the atmospheric supplies of carbon dioxide and methane using a 3D-model based on exchange fluxes due to peat formation over the past 9000 years. With this model he also simulated the effects of draining peatlands on CO2 emission and on climate change. When studying the effects on climate change, Borren took into account the northwards shift in bioclimate zones in West Siberia as a result of global warming. The results revealed that from the Holocene up until now, peat moorlands have counteracted the greenhouse effect by functioning as a net storage place for greenhouse gasses; more CO2 is stored than methane released, even if the stronger greenhouse effect of methane is allowed for.

Borren developed a new calculation method to determine the significance of peat moorlands for climate change. To date, limits on greenhouse gas emissions (Kyoto protocols) have been calculated on the basis of instantaneous emissions and not the gradually changing emissions, which is the case for woods and natural peatlands. With this new method the researcher could also clearly show that non-drained peatlands will eventually be extremely important net storage areas for greenhouse gasses from the atmosphere, even in the case of global warming.

Global warming ensures reversal

If global warming and the northward shift of bioclimate zones continue, however, then the peat moorlands will enhance the greenhouse effect says Borren. After about 250 years this effect will once again be reversed, as the increase in carbon dioxide uptake will then be greater than the increase in methane emissions. Drainage always contributes to a strengthening of the greenhouse effect. Borren therefore believes that the reclamation of peatlands will enhance global warming far more than the natural effects he describes in his thesis.

Wiebe Borren's research was funded by NWO.

Dr Wiebe Borren | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_6X6CNM_Eng
http://www.tno.nl

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>