Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA POLinSAR 2007: Imaging forests in 3-D

30.01.2007
More than 140 scientists and researchers from 22 countries have attended the weeklong POLinSAR 2007 workshop, “Science and Applications of SAR Polarimetry and Polarimetric Interferometry,” hosted at ESRIN, ESA’s Earth Observation centre in Frascati, Italy, to hear the first space borne results and to attend interactive training sessions.

Polarimetric interferometry is performed using two polarimetric SAR images acquired from slightly different directions. The study of these data sets permits us to retrieve information related to the 3-D structure of forest or other natural volume scatterers, such as underlying topography, forest height and to estimate forest biomass – a quantitative estimate of the entire amount of organic material in a particular forest habitat.

Workshop participants saw the first POLinSAR in-orbit results from the Japan Aerospace Exploration Agency’s (JAXA) Advanced Land Observing Satellite (ALOS). Launched on 24 January 2006, ALOS is supported as an ESA Third Party Mission.

"POLinSAR allows us to estimate key environmental parameters that are needed today. For instance, it allows us to make estimations of forest biomass on a global scale," said Konstantinos Papathanassiou, a researcher with the Radar and Microwaves Institute at German Aerospace Centre (DLR). "The conclusions from these global estimates may also be important for climate change modellers and decision makers."

The capability of radar to penetrate ground cover and 'see' the underlying terrain, coupled with POLinSAR techniques to detect forest canopies, make it possible to classify trees and estimate their height using SAR imagery. This may sound of interest only to a narrow band of scientists, until one realizes that determining the types and heights of trees in a forest are critical ingredients in determining its biomass.

In turn, forest’s biomass, together with how it changes over time, are key elements in determining an area’s capacity to act as a carbon sink, soaking up carbon-based gases and cleansing the atmosphere of major types of pollution blamed for the greenhouse effect and global warming. Producing accurate forest biomass estimates, and how they are changing over time, are a critical challenge to environmental scientists to whom national governments are turning for help in meeting their international obligations to stabilise greenhouse-gas emissions under the Kyoto Protocol.

Also at the workshop, ESA provided additional interactive training opportunities for the POLSARPRO tool developed by the University of Rennes 1, France, which includes a wide-ranging tutorial in Polarimetry and Polarimetric Interferometry. To date, some 700 registered users from 62 countries worldwide are using the tool.

Over the last 2 years, ESA has trained some 250 scientists to exploit Polarimetric airborne/spaceborne SAR data for science and applications development using in particular the POLSARPRO software and educational tool.

"POLinSAR is the starting point of future applications because we are at the point where new satellites will be launched, such as Germany’s TerraSAR-X and Canada’s Radarsat-2, that can provide polarimetry and interferometry," said Prof. Eric Pottier, head of the Radar Polarimetry Group at the University of Rennes. "Processing this kind of data will open many new application doors, so it is very important to train young students now to be able to handle this kind of data."

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMA7LSMTWE_planet_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>