Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme autumn temperatures cause unseasonable flowering in the Netherlands

21.12.2006
Observers in the Netherlands reported that more than 240 wild plant species were flowering in December, along with more than 200 cultivated species.

According to biologist Arnold van Vliet of Wageningen University, this unseasonable flowering is being caused by extremely high autumn temperatures. The mean autumn temperature in 2006 was 13.6°C, which is 3.4°C above the long-term average. It was even 1.6°C warmer than in 2005, which was previously the warmest autumn since 1706, when records were first kept.

It is very likely that other European countries also experienced unseasonable flowering due to the high temperatures. This information emerged from a unique, large-scale observation campaign conducted by volunteers during the first 15 days of the month.

The flowering observation campaign was coordinated by the Dutch phenological network Natuurkalender (Nature’s Calendar), which comprises organisations such as Wageningen University, the FLORON Foundation and the popular nature and wildlife radio programme Vroege Vogels (Early Birds). After the radio programme requested its listeners to make observations of plants in flower on the 10th of December, nearly 2000 observations were submitted by 280 volunteers via the Nature’s Calendar website.

The aim of the observation campaign was to determine the effects of the extreme weather conditions in the Netherlands during the second half of 2006. This year included not only the warmest July and September on record, but also the wettest August. Temperatures were far above normal: 3.7°C higher in September, 3.3°C higher in October and 3°C higher in November. The first 17 days of December were even more extreme, registering 4.2°C above normal. For the entire autumn the average temperature was 3.4°C above the long-term average and even 1.6°C warmer than the autumn of 2005, which was previously the warmest on record in the Netherlands.

An analysis of the observations revealed that over 240 wild plant species were observed to be flowering during the first 15 days of December. Examples of such species include Cow parsley, Sweet violet and Evening star. According to scientists at Wageningen University, only 2% of these plants normally flower in the winter, while 27% end their main flowering period in autumn and 56% before October. In addition, the observers reported that more than 200 garden plants were flowering in December.

According to this data, the unusually high temperatures are clearly lengthening the growing season. Leaf colouring and leaf fall of species like Oak and Beech occurred two to three weeks later than the average during the first half of the 20th century. For species such as Hazel, the flowering season began at least one month earlier than normal. Some Rhododendron varieties and Japanese Cherry also flowered at the beginning of December, while they previously flowered at the end of January or February. A complete overview of all the wild plants observed can be found at: www.natuurkalender.nl.

Van Vliet warns that the ecological consequences of the extreme temperatures and the longer growing season remain largely unknown. Next year will be an important year for ecologists to identify the impacts on plants and animals. The high temperatures in 2006 are likely to increase the numbers of warmth-loving species even further, a trend which has been observed for some time.

Jac Niessen | alfa
Further information:
http://www.natuurkalender.nl/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>