Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Living coral reefs provide better protection from tsunami waves

Healthy coral reefs provide their adjacent coasts with substantially more protection from destructive tsunami waves than do unhealthy or dead reefs, a Princeton University study suggests.

Initially spurred by the tsunami that devastated the coastlines of the Indian Ocean two years ago, a team of scientists developed the first-ever computer model of a tsunami strike against a reef-bounded shoreline, using a volcanic island as an example. The model demonstrates that healthy reefs offer the coast at least twice as much protection as dead reefs. The finding provides the first quantitative confirmation of a widely held theory regarding the value of living coral reefs as a defense against tsunami waves, which are often generated by powerful undersea earthquakes.

Princeton professor Michael Oppenheimer said his team's work will give scientists the ability to quantify how much any given reef will benefit its particular stretch of coast.

"Healthy reefs have rougher surfaces, which provide friction that slows the waves substantially in comparison with smoother, unhealthy ones," said Oppenheimer, the Albert G. Milbank Professor of Geosciences and International Affairs. "Scientists had never before studied this effect by the numbers, nor had they ever analyzed it over a wide variety of coastal shapes. This study provides yet another motivating factor for protecting the planet's coral reefs from degradation."

The team's findings appear in the Dec. 14 edition of the journal, Geophysical Review Letters. In addition to Oppenheimer, other team members include Robert Hallberg, who is head of the Oceans and Climate Group at the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Lab, and Catherine Kunkel, who is the paper's lead author. Kunkel spearheaded the work during her senior undergraduate year at Princeton, from which she graduated with a physics degree in June.

Though anecdotal observations of reefs' effects on tsunami abounded after the 2004 Indian Ocean strike, Kunkel said, it was difficult to form any real conclusions because so many of these observations came after the fact. The goal of this study, which began as Kunkel's senior thesis project, was to provide a systematic framework by which to examine the assumption that healthy reefs protect shorelines more effectively.

"For our purposes, we assumed that the health of the reef would only be important in terms of the drag it exerted on the wave," said Kunkel, who is currently working as a research assistant at Tsinghua University in China. "If you have a healthy reef, it has lots of live coral branching out, sticking a lot of small obstacles into the water. A dead reef, on the other hand, is not as rough -- it tends to erode and exerts less drag on the wave."

A turbulent mountain of water crashing over a complicated rough surface presented Kunkel with a number of obstacles for her own study -- specifically, how to find a way to express each of these effects with a mathematical formula that a computer could employ to simulate it. Different complex parameters had to be considered one by one: the width and depth of the reef; the roughness of its surface; the size of the lagoon behind it; and the slope of the coast beyond. And the overarching element was the wave itself and its interaction with all these obstacles. Eventually, Kunkel found a set of equations that provided a limited but comprehensive picture of a tsunami strike.

"We had to idealize a number of factors, because we wanted to create a model that could be used for a general shoreline," Kunkel said. "For example, we had to consider a perfectly even ocean floor, because uneven ones can funnel a wave into a certain area."

Despite the limitations of the model, Oppenheimer said it provides a sound basis for the team's conclusions.

"The general conclusion is that a healthy reef might provide twice as much protection as a dead one," he said. "This could translate into sparing large sections of inshore area from destruction."

Because coral reefs are dying from rising ocean temperatures, increasing ocean acidity, and direct human damage, Oppenheimer said the findings offer yet another reason to protect these fragile offshore ecosystems.

"This study shows yet another way that protecting the environment relates to humanity in a very tangible way," he said. "Villages get built behind coral reefs for good reasons, and this is one of them."

Kunkel said that she hoped the study would inspire other scientists to continue the research by obtaining more observational data. Incorporating such data into the team's theoretical model, she said, would then allow scientists to plan better for future tsunami strikes along local coastlines.

"We now have a basic idea of what variables are important, but if you want to quantify the effectiveness of a barrier reef around a particular island, you'd want to model that island directly," Kunkel said.

Coral reefs reduce tsunami impact in model simulations
Catherine M. Kunkel, Robert W. Hallberg, and Michael Oppenheimer
Significant buffering of the impact of tsunamis by coral reefs is suggested by limited observations and some anecdotal reports, particularly following the 2004 Indian Ocean tsunami. Here we simulate tsunami run-up on idealized topographies in one and two dimensions using a nonlinear shallow water model and show that a sufficiently wide barrier reef within a meter or two of the surface reduces run-up on land on the order of 50 percent. We studied topographies representative of volcanic islands (islands with no continental shelf) but our conclusions may pertain to other topographies. Effectiveness depends on the amplitude and wavelength of the incident tsunami, as well as the geometry and health of the reef and the offshore distance of the reef. Reducing the threat to reefs from anthropogenic nutrients, sedimentation, fishing practices, channel building and global warming would help to protect some islands against tsunamis. Kunkel, Hallberg and M. Oppenheimer (2006), Coral reefs reduce tsunami impact in model simulations, Geophys. Res. Lett., 33, L23612, doi:10.1029/2006GL027892.

Chad Boutin | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>