Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing air pollution could increase rice harvests in India

06.12.2006
New research from the University of California indicates that reductions of human-generated air pollution could create unexpected agricultural benefits in one of the world's poorest regions. These new findings will be published online the week of Dec. 4 in the journal Proceedings of the National Academy of Sciences (PNAS).

Rice harvests increased dramatically in India during the "Green Revolution" of the 1960s and 1970s, making the country self-sufficient in its staple food. Harvest growth has slowed since the mid-1980s, however, raising concerns that food shortages could recur in this densely populated and poor nation.

Several explanations for the slowdown have been proposed, but until now, none took into account the complex interactions of two pollution-related sources of climate change: atmospheric brown clouds (ABCs), which form from soot and other fine particles in the air (collectively termed aerosols), and the better-known problem of global warming caused by greenhouse gases such as carbon dioxide.

In the PNAS paper, Maximilian Auffhammer at UC Berkeley's College of Natural Resources, and V. "Ram" Ramanathan and Jeffrey Vincent, researchers at UC San Diego, analyze historical data on Indian rice harvests and examine the combined effects of atmospheric brown clouds and greenhouse gases on growing conditions. They find that the combined effects were negative and were greater after the mid-1980s than before, coinciding with the observed slowdown in harvest growth. They estimate that harvests would have been 20 to 25 percent higher during some years in the 1990s if the negative climate impacts had not occurred.

Previous research by an international scientific team led by Ramanathan, professor of atmospheric sciences at Scripps Institution of Oceanography, found that brown clouds have made the Indian subcontinent drier and cooler. Although this suggests the existence of a climatic tradeoff, with reductions in aerosols potentially unleashing a stronger warming trend, the current study indicates that joint reductions in the two types of pollutants would, in fact, benefit Indian rice farmers. This is because reductions in aerosols would enhance rainfall, while reductions in greenhouse gases would reduce the higher nighttime temperatures that can negatively affect the growth of the rice plant.

"Greenhouse gases and aerosols in brown clouds are known to be competing factors in global warming," said Ramanathan. "The major finding of this interdisciplinary study is that their effects on rice production are additive, which is clearly an unwelcome surprise."

Peter Timmer, senior fellow at the Center for Global Development, an independent, non-profit think tank in Washington, D.C., added that the study "links a sophisticated model of agricultural production in India to climate and pollution models, with the critical finding that 'brown cloud' pollution has already cost India millions of tons of food production."

The researchers noted that the impact of ABCs and greenhouse gases on agriculture provides another incentive for controlling air pollution in heavily polluted Asia. "Air pollution control measures in India have been motivated mainly by concern about the health of residents of the urban areas where most of the pollution is generated," said Vincent, an economist and environmental research director at the UC Institute on Global Conflict and Cooperation (IGCC). "Our study provides an additional motivation related to the economic health of poor rural areas."

Auffhammer, UC Berkeley assistant professor of agricultural and resource economics, added that "while this study focuses on India's rain-fed states, ABCs exist throughout Asia's main rice-producing countries, many of which have experienced decreasing growth rates in harvests, too. Furthering our understanding of how air pollution affects agricultural output is very important to ensure food security in the world's most populous region."

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>