Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scrap tires can be used to filter wastewater

Every year, the United State produces millions of scrap tires that clog landfills and become breeding areas for pests. Finding adequate uses for castoff tires is a continuing challenge and illegal dumping has become a serious problem throughout the nation.

Dr. Yuefeng Xie, associate professor of environmental engineering at Penn State Harrisburg, has developed a method that uses crumb rubber to filter wastewater, which can help ease the tire problem and clean up the environment at the same time.

"My research has found that crumb rubber, derived from waste tires, can be used as a filter media," Xie explains. "The crumb rubber could be used for treating wastewater, ship ballast water, and storm water."

Crumb rubber is produced by chopping up and grinding up waste tires to a desired size, cleaning the rubber and removing any metal particles. It is currently being used in highway pavement, athletic track surfaces, playgrounds, landfill liners, compost bulking agents, various manufactured products, energy recovery and even as artificial reefs for aquatic life.

For traditional wastewater filtration, gravity downflow granular filters using sand or anthracite as a medium are commonly used. One major problem with these filters is that upon backwashing the particles, the larger ones settle at a greater rate than the smaller.

The Penn State researcher explains that this causes the top of the filter bed to hold the smallest medium particles and the bottom to hold the largest with the small medium particles or top layer of the filter tending to become clogged quickly.

In his research, he has proved that crumb rubber is not a rigid material; instead it can be easily bent or compressed. Through the crumb rubber method, the larger solids are removed at the top layer of the filter and the smaller solids at a lower level, greatly minimizing the clogging problem.

Several studies conducted by Xie show that the crumb rubber filter is much more cost effective than conventional sand or anthracite filters. Because of substantially higher water filtration rates and lighter weight in comparison to sand or anthracite, crumb rubber filters may also be used in a mobile treatment unit for disaster relief operations, he adds.

Because the crumb rubber is compressible, the porosity of the particles is decreased which resembling an ideal filter medium configuration. It can then be used at higher filter rates while performing similarly to other media now in use. The crumb rubber media provide better effluent qualities and larger media allow longer filter runs at higher flow rates.

Steve Hevner | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>