Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scrap tires can be used to filter wastewater

21.11.2006
Every year, the United State produces millions of scrap tires that clog landfills and become breeding areas for pests. Finding adequate uses for castoff tires is a continuing challenge and illegal dumping has become a serious problem throughout the nation.

Dr. Yuefeng Xie, associate professor of environmental engineering at Penn State Harrisburg, has developed a method that uses crumb rubber to filter wastewater, which can help ease the tire problem and clean up the environment at the same time.

"My research has found that crumb rubber, derived from waste tires, can be used as a filter media," Xie explains. "The crumb rubber could be used for treating wastewater, ship ballast water, and storm water."

Crumb rubber is produced by chopping up and grinding up waste tires to a desired size, cleaning the rubber and removing any metal particles. It is currently being used in highway pavement, athletic track surfaces, playgrounds, landfill liners, compost bulking agents, various manufactured products, energy recovery and even as artificial reefs for aquatic life.

For traditional wastewater filtration, gravity downflow granular filters using sand or anthracite as a medium are commonly used. One major problem with these filters is that upon backwashing the particles, the larger ones settle at a greater rate than the smaller.

The Penn State researcher explains that this causes the top of the filter bed to hold the smallest medium particles and the bottom to hold the largest with the small medium particles or top layer of the filter tending to become clogged quickly.

In his research, he has proved that crumb rubber is not a rigid material; instead it can be easily bent or compressed. Through the crumb rubber method, the larger solids are removed at the top layer of the filter and the smaller solids at a lower level, greatly minimizing the clogging problem.

Several studies conducted by Xie show that the crumb rubber filter is much more cost effective than conventional sand or anthracite filters. Because of substantially higher water filtration rates and lighter weight in comparison to sand or anthracite, crumb rubber filters may also be used in a mobile treatment unit for disaster relief operations, he adds.

Because the crumb rubber is compressible, the porosity of the particles is decreased which resembling an ideal filter medium configuration. It can then be used at higher filter rates while performing similarly to other media now in use. The crumb rubber media provide better effluent qualities and larger media allow longer filter runs at higher flow rates.

Steve Hevner | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>