Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pattern of Human Ebola Outbreaks Linked to Wildlife and Climate

16.11.2006
A visiting biologist at the University of California, San Diego and her colleagues in Africa and Britain have shown that there are close linkages between outbreaks of Ebola hemorrhagic fever in human and wildlife populations, and that climate may influence the spread of the disease.

The decade-long study, published this month (with a cover date of January) in the journal Transactions of the Royal Society of Tropical Medicine and Hygiene, tracked animal disease outbreaks and human exposure to the Ebola virus in Gabon and adjoining northwestern Republic of the Congo (RoC). The researchers found that many additional wildlife and human populations within and outside of known epidemic zones have been exposed to the virus. When they considered disease outbreaks in all mammals, not just humans, the spread of Ebola no longer seemed erratic and inexplicable.

“Some researchers have hypothesized that outbreaks of Ebola are randomly-spaced periodic outbursts, while others have suggested that Ebola has spread like a wave surging over the Central African landscape,” said Sally Lahm, a visiting scholar in UCSD’s Division of Biological Sciences and the primary investigator of the study. “Our results are intermediate between these two views. There is a perceived pattern to the way the virus spreads, but it is not simply a wave affecting everything in its path, since apparently healthy mammal communities thrived in close proximity to Ebola epidemic sites.”

Lahm has been a research associate at the Institute for Research in Tropical Ecology in Makokou, Gabon since 1982. She was conducting unrelated ecological studies when outbreaks of Ebola virus in humans prompted her to explore how the disease was affecting animal populations in the region. Between 1994 and 2003, she collected reports of animal illness and deaths from wildlife survey teams, villagers, hunters, fishers, loggers, miners, Ebola survivors and families of victims from across Gabon and into northwestern RoC.

Despite the low probability of finding dead animals in the humid forests that cover most of the region, due to the scavenging by animals and insects and rapid decomposition, Lahm received and verified reports of 397 dead animals. The carcasses, which were found at 35 different sites in Gabon and RoC, included gorillas, chimpanzees, mandrills, bush pigs, porcupines and four species of antelope. Tests on 14 samples from the decomposed carcasses did not detect the Ebola virus, but at 12 sites, observers also saw sick or dying animals with symptoms consistent with Ebola infection. In addition, 16 reported wildlife mortality incidents coincided with known Ebola epidemics.

“The transmission of Ebola within animal populations is much more widespread than previously believed,” explained Lahm. “Ebola appears to spread both within species and between different species of animals.”

To determine the extent of human exposure to Ebola within Gabon, Lahm collaborated with Maryvonne Kombila, the director of the Department of Tropical Medicine and Parasitology at the University of Health Sciences in Libreville, Gabon and with Robert Swanepoel, the director of the Special Pathogens Branch of the National Institute of Communicable Diseases in Sandringham, South Africa. Swanepoel tested for antibodies to the Ebola virus in more than one-thousand human blood samples that had been collected by Kombila and her colleagues for other research in Gabon between 1981 and 1997.

Fourteen of the blood samples tested positive for antibodies to Ebola. Some people had been exposed at least three years before the first known Ebola outbreak in Gabon, while others lived in regions where no known epidemics had occurred. In 2003, Lahm was able to track down six of the people whose blood samples indicated that they had been exposed to the Ebola virus. Life history interviews revealed that some of the antibody-positive people had never visited a region where known Ebola outbreaks occurred in humans. Therefore people have been exposed to the Ebola virus where it has not been recognized.

Based on their findings, the researchers were able to identify relationships among previously documented Ebola outbreaks in humans and wildlife in Gabon and RoC that initially seemed disparate and unrelated. They proposed that the virus first spread southwest across Gabon. It then looped back toward the northeast from sites in western or central Gabon and caused the most recent outbreaks in RoC.

“If the spread of the Ebola virus follows its current northeastward path, the next outbreak would be expected to occur in northern Republic of the Congo towards Cameroon and the Central African Republic,” predicted Lahm.

However, according to the findings, the spread of Ebola also depends on climate factors. Illness and deaths among animals were most prevalent during periods of prolonged drought-like conditions in the rainforest, which indicates that severe environmental stress may facilitate disease transmission.

In the study, the researchers urge that public education is needed to decrease human contact with potentially infected wildlife by discouraging people from scavenging dead animals and by promoting safe hunting and trapping practices, especially because the results show that outbreaks in wildlife populations have been much more frequent than previously believed. They emphasize that monitoring wildlife in collaboration with rural African residents could provide information essential for protecting public health as well as comprehending the ecology of the disease.

Lahm points out that there remain many unanswered questions about Ebola including how the virus spreads within and between mammal species.

“Our study provides more pieces of the puzzle, but at the same time it is enlarging the puzzle,” she noted.

Richard Barnes from the Environmental Sciences Research Center at Anglia Ruskin University, Cambridge, England, who is currently a visiting scholar in UCSD’s Division of Biological Sciences, also contributed to the study.

Conservation International provided support for the study.

Media Contact: Sherry Seethaler (858) 534-4656

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>