Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming increases species extinctions worldwide

15.11.2006
Global warming has already caused extinctions in the most sensitive habitats and will continue to cause more species to go extinct over the next 50 to 100 years, confirms the most comprehensive study since 2003 on the effects of climate change on wild species worldwide by a University of Texas at Austin biologist.

Dr. Camille Parmesan's synthesis also shows that species are not evolving fast enough to prevent extinction.

"This is absolutely the most comprehensive synthesis of the impact of climate change on species to date," said Parmesan, associate professor of integrative biology. "Earlier synthesis were hampered from drawing broad conclusions by the relative lack of studies. Because there are now so many papers on this subject, we can start pulling together some patterns that we weren't able to before."

Parmesan reviewed more than 800 scientific studies on the effects of human-induced climate change on thousands of species.

"We are seeing stronger responses in species in areas with very cold-adapted species that have had strong warming trends, like Antarctica and the Artic," said Parmesan. "That's something we expected a few years ago but didn't quite have the data to compare regions."

Previously published predictions, including those co-authored by Parmesan in a 2001 Intergovernmental Panel on Climate Change report, were that species restricted to cold climate habitats like the Earth's poles or mountain tops and with narrow temperature tolerances (for example, tropical corals) would be most affected by global warming. Less than a decade later, those predictions have been born out.

The most sensitive species are going extinct and/or shifting their ranges geographically as their original habitats become inhospitable. The studies reviewed by Parmesan reveal this trend will continue.

"Some species that are adapted to a wide array of environments--globally common, or what we call weedy or urban species--will be most likely to persist," said Parmesan. "Rare species that live in fragile or extreme habitats are already being affected, and we expect that to continue."

The studies Parmesan analyzed also show that some species--those with short generation times like insects--are evolving in response to climate change, but not in ways that could prevent extinction.

"Some populations are adapting, but species are not evolving anything that's really new, something we haven't been able to say before because we didn't have enough studies," Parmesan said. "To really come up with something new that's going to allow a species to live in a completely new environment takes a million years. It's not going to happen in a hundred years or even a few hundred years. By then, we might not even think of it as the same species.

"The good news is that some species already had a few individuals that were good at moving, so some populations are evolving better dispersal abilities. These species are able to move faster and better than we thought they could as climate warms at their northern range boundaries. So, they're expanding into new territories very rapidly."

Parmesan said that pests and diseases are also showing the same northward shifts as other wild animals.

Parmesan also found that, at present, scientists cannot predict exactly which species will respond to climate change based on what kind of organism it is. Within groups of animals and plants, some species respond to climate change and others do not.

"Whether it's within fish, trees or butterflies, you're seeing some species responding strongly and some staying fairly stable," said Parmesan. "But within each group you're still seeing about half of the species showing a response. It's a very widespread phenomenon."

Camille Parmesan | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>