Plutonium or greenhouse gases? Weighing the energy options

So concludes University of Michigan professor Rodney Ewing, who has analyzed just how much nuclear power would need to be produced to significantly reduce greenhouse gas emissions worldwide, and the implications of the associated increase in nuclear power plants. Ewing will present his findings Oct. 23 as the Michel T. Halbouty Distinguished Lecturer at the annual meeting of the Geological Society of America in Philadelphia.

“Usually when people talk about nuclear power as a solution for global warming, the issues of nuclear waste and weapons proliferation are footnotes in the discussion,” said Ewing, who is the Donald R. Peacor Collegiate Professor and Chair in the U-M Department of Geological Sciences and also has faculty appointments in the departments of Nuclear Engineering & Radiological Sciences and Materials Science & Engineering. “I think we have to find a way to consider the complete picture when choosing among energy sources.”

In an effort to capture that complete picture, Ewing compared carbon-based fossil fuels with nuclear power, considering not only the technologies involved but also the environmental impacts. Similar comparisons have been made between different energy-producing systems, “but in the case of nuclear power, such an analysis is difficult because there are different types of nuclear reactors and there is not a single nuclear fuel cycle, but rather many variants, with different strategies for reprocessing and disposing of nuclear wastes,” Ewing said.

His presentation, which considers various fuel cycles, shows that nuclear power generation would need to increase by a factor of three to ten over current levels to have a significant impact on greenhouse gas emissions. “We currently have 400-plus nuclear reactors operating worldwide, and we would need something like 3,500 nuclear power plants,” Ewing said.

Developing the necessary nuclear technologies and building the additional power plants is an enormous undertaking that probably would take longer than the 50 years that experts say we have in which to come up with solutions to global warming, Ewing said.

Even if they could be built and brought online quickly, that many power plants would generate tens of thousands of metric tons of additional nuclear waste annually. “The amount that would be created each year would be equal to the present capacity anticipated at the repository at Yucca Mountain,” Ewing said, referring to the proposed disposal site in Nevada that has been under study for more than two decades. Ewing recently co-edited a book, “Uncertainty Underground,” that reviews uncertainties in the analysis of the long-term performance of the Yucca Mountain repository.

Plutonium created as a byproduct of nuclear power generation also is a concern because of its potential for use in nuclear weapons.

“Not everyone thinks this way, but I consider the explosion of a nuclear weapon to be a pretty large environmental impact with global implications,” Ewing said. “A typical nuclear weapon will kill many, many hundreds of thousands of people, and the global impact would be comparable to something like Chernobyl in the spread of fallout.”

So the real question, said Ewing, is: “Plutonium versus carbon—which would you rather have as your problem? I don't have the answer, but the points I'm raising are ones I think people need to be considering.”

Media Contact

Nancy Ross-Flanigan EurekAlert!

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors