Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmful Algal Bloom (Red Tide) Models and Forecasts to be Expanded in Gulf of Maine

18.10.2006
New Program Could Reopen Valuable Offshore Shellfish Beds
A new observation and modeling program focused on the southern Gulf of Maine and adjacent New England shelf waters could aid policymakers in deciding whether or not to re-open, develop, and manage offshore shellfish beds with potential sustained harvesting value of more than $50 million per year. These areas are presently closed to the harvest of certain species of shellfish due to the presence of red tide toxins.

Researchers at the Woods Hole Oceanographic Institution (WHOI) and colleagues from seven other universities or agencies began the five-year Gulf of Maine Toxicity program, or GOMTOX, on September 1. The $7.5 million dollar program is funded by a grant from the National Oceanic and Atmospheric Administration‘s (NOAA) National Ocean Service, Center for Sponsored Coastal Ocean Research (NOS/CSCOR) through the ECOHAB program.

The new research effort expands past studies in the Gulf of Maine and builds on data collected during the historic 2005 red tide, which led to closure of both nearshore shellfish beds and offshore beds in federal waters out to Georges Bank. The toxicity also extended for the first time to the islands of Martha’s Vineyard and Nantucket.

The Gulf of Maine (GoM) and its adjacent southern New England shelf is a vast region with extensive shellfish resources, large portions of which are frequently contaminated with paralytic shellfish poisoning (PSP) toxins produced by the dinoflagellate Alexandrium fundyense. The 2005 outbreak caused millions of dollars in economic damage, but monitoring programs and cooperation among federal, state and local officials, scientists, and shellfishermen prevented any reported cases of illness from people eating contaminated shellfish.

“As a result of the 2005 bloom and the closures in federal waters offshore and on the Cape and Islands, we realized we needed to expand efforts and develop a full, regional-scale understanding of Alexandrium fundyense blooms,” lead investigator Don Anderson of WHOI said. “We don’t understand the linkages between bloom dynamics and toxicity in waters near shore versus the offshore, nor do we know how toxicity is delivered to the shellfish in those offshore waters. An additional challenge is the need to expand modeling and forecasting capabilities to include the entire region, and to transition these tools to operational and management use.”

Anderson said the information and new technologies gained from the project will help managers, regulators and the shellfish industry to fully utilize and effectively manage both nearshore and offshore shellfish resources, and could lead to harvesting of the offshore surfclam and ocean quahog beds on Georges Bank and Nantucket Shoals, which have an estimated potential value of more than $50 million a year. The program should also provide information crucial to the development of a roe-on scallop industry in those waters - a product which is presently restricted because of toxin that accumulates in the roe.

GOMTOX will utilize a combination of large-and small-scale survey cruises, autonomous gliders, moored instruments and traps, drifters, satellite imagery and numerical models. Researchers will incorporate field observations into a suite of numerical models of the region for hindcasting and forecasting applications for both near shore and offshore shellfish resources.

In addition to WHOI researchers, scientists participating in GOMTOX represent Canada’s Department of Fisheries and Oceans, NOAA’s Northeast Fisheries Science Center, the Canadian National Research Council, the U.S. Food and Drug Administration, University of Maine, University of Massachusetts, and the Stellwagen Bank National Marine Sanctuary.

“We will be working closely with federal, state and local officials, resource managers and shellfishermen to synthesize results and disseminate the information and technology,” Anderson said. “Our ultimate goal is to transition scientific and management tools to the regulatory community for operational use. This project covers the entire Gulf fo Maine, including the Bay of Fundy, so there are many affected user groups, communities, and industries who stand to benefit.”

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>