Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossils pinpoint tropics as Earth's most fruitful biodiversity spawning ground

06.10.2006
Study indicates loss of tropical biodiversity would affect entire globe

A team of scientists has completed a study that explains why the tropics are so much richer in biodiversity than higher latitudes. And they say that their work highlights the importance of preserving those species against extinction.

"If you came from outer space and you started randomly observing life on Earth, at least before people were here, the first thing you'd see was this incredible profusion of life in the tropics," said the report's lead author, David Jablonski, the William Kenan Jr. Professor in Geophysical Sciences at the University of Chicago. "This is the single most dramatic biodiversity pattern on this planet."

Jablonski and his co-authors, Kaustuv Roy, of the University of California, San Diego, and James Valentine, of the University of California, Berkeley, present their new findings on the origins of this global diversity trend in the Oct. 6 issue of the journal Science.

Why the tropics are so much richer in species and evolutionary lineages than elsewhere on Earth has loomed as one of the largest questions facing biologists for more than a century. Biologists have proposed virtually every possible combination of origination, extinction and immigration to explain the pattern at one time or another. But for the past 30 years, they have tended to view the tropics either as a cradle of diversity, where new species originate, or as a museum of diversity, where old species persist. And no resolution has been in sight.

The fossil data of the past 11 million years has broken this logjam. It shows that it's not an either/or proposition. The new study is the first to amass enough data to dissect the roles of extinction, origination and immigration directly. "I think we've killed the idea that the tropics is either a cradle or a museum of biodiversity. It's both," said Valentine, professor emeritus of integrative biology at UC Berkeley.

As the engine of global biodiversity, the tropics are where new species evolve and persist while spreading to higher latitudes, said Roy, a UCSD biology professor. "The world is connected. It's a global village, even for organisms. Along the California coast here, most of the marine species belong to lineages that originated in the tropics."

The Science study underscores the need to avert a tropical diversity crises, its authors said.

"Human-caused extinctions in the tropics will eventually start to affect the biological diversity in the temperate and high latitudes," Roy said. "This is not going to be apparent in the next 50 years, but it will be a long-term consequence."

Noted Valentine: "We should preserve the tropics, because without them, we've lost a key source for diversity in higher latitudes."

The fossil record indicates that the tropics have enjoyed a richness of biodiversity spanning at least 250 million years. Jablonski compared the population of species on Earth to the population of a modern town. To understand how that population mix came about would entail an examination of birth records, cemetery records and immigration records.

The team acquired its data for the Science study by analyzing bivalves, a class of marine life that includes clams, scallops and oysters. "They live everywhere," Jablonski said. "They're found from the Arctic Ocean to the hottest part of the tropics, and they have left a great fossil record."

This record permitted the team to track more than 150 bivalve lineages back through time and answer a series of key questions: Where do they start? How long do they last? Where do they persist? And where do they spread?

As the paleontologists traced the lineages back into geologic time, they found a consistent pattern in each slice of time, regardless of the prevailing climatic conditions. Over the entire 11-million-year period, they found that more than twice as many bivalve lineages started in the tropics than at higher latitudes. Meanwhile, only 30 varieties of organisms that lived only in the tropics went extinct, compared to 107 that lived outside the tropics, or at all latitudes.

"It's a really striking, surprising pattern," Jablonski said. "And it appears that other animals and plants were playing the same game, even on land," now that previous studies are looked at with new eyes.

The three paleontologists began working on the problem more than a decade ago. The first step involved completing a massive standardization of all living and many fossil bivalve species to ensure their consistent and proper classification.

To accomplish the task, Jablonski churned through stacks of monographs, some dating back to the 19th century, and combed drawer after drawer of bivalve specimens in the Smithsonian Institution and other natural history museums in Chicago, London, Brussels, Belgium; and Leiden, the Netherlands.

The forces behind the flood of evolutionary activity that flows from the tropics remain a mystery. "But now that we have a handle on the dynamics that set up this spectacular planet-sized gradient, we can begin to get at the underlying processes in a whole new way," Jablonski said.

Jablonski, Roy and Valentine will attempt to address this and related questions as they push their analysis further back in time.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>