Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fossils pinpoint tropics as Earth's most fruitful biodiversity spawning ground

Study indicates loss of tropical biodiversity would affect entire globe

A team of scientists has completed a study that explains why the tropics are so much richer in biodiversity than higher latitudes. And they say that their work highlights the importance of preserving those species against extinction.

"If you came from outer space and you started randomly observing life on Earth, at least before people were here, the first thing you'd see was this incredible profusion of life in the tropics," said the report's lead author, David Jablonski, the William Kenan Jr. Professor in Geophysical Sciences at the University of Chicago. "This is the single most dramatic biodiversity pattern on this planet."

Jablonski and his co-authors, Kaustuv Roy, of the University of California, San Diego, and James Valentine, of the University of California, Berkeley, present their new findings on the origins of this global diversity trend in the Oct. 6 issue of the journal Science.

Why the tropics are so much richer in species and evolutionary lineages than elsewhere on Earth has loomed as one of the largest questions facing biologists for more than a century. Biologists have proposed virtually every possible combination of origination, extinction and immigration to explain the pattern at one time or another. But for the past 30 years, they have tended to view the tropics either as a cradle of diversity, where new species originate, or as a museum of diversity, where old species persist. And no resolution has been in sight.

The fossil data of the past 11 million years has broken this logjam. It shows that it's not an either/or proposition. The new study is the first to amass enough data to dissect the roles of extinction, origination and immigration directly. "I think we've killed the idea that the tropics is either a cradle or a museum of biodiversity. It's both," said Valentine, professor emeritus of integrative biology at UC Berkeley.

As the engine of global biodiversity, the tropics are where new species evolve and persist while spreading to higher latitudes, said Roy, a UCSD biology professor. "The world is connected. It's a global village, even for organisms. Along the California coast here, most of the marine species belong to lineages that originated in the tropics."

The Science study underscores the need to avert a tropical diversity crises, its authors said.

"Human-caused extinctions in the tropics will eventually start to affect the biological diversity in the temperate and high latitudes," Roy said. "This is not going to be apparent in the next 50 years, but it will be a long-term consequence."

Noted Valentine: "We should preserve the tropics, because without them, we've lost a key source for diversity in higher latitudes."

The fossil record indicates that the tropics have enjoyed a richness of biodiversity spanning at least 250 million years. Jablonski compared the population of species on Earth to the population of a modern town. To understand how that population mix came about would entail an examination of birth records, cemetery records and immigration records.

The team acquired its data for the Science study by analyzing bivalves, a class of marine life that includes clams, scallops and oysters. "They live everywhere," Jablonski said. "They're found from the Arctic Ocean to the hottest part of the tropics, and they have left a great fossil record."

This record permitted the team to track more than 150 bivalve lineages back through time and answer a series of key questions: Where do they start? How long do they last? Where do they persist? And where do they spread?

As the paleontologists traced the lineages back into geologic time, they found a consistent pattern in each slice of time, regardless of the prevailing climatic conditions. Over the entire 11-million-year period, they found that more than twice as many bivalve lineages started in the tropics than at higher latitudes. Meanwhile, only 30 varieties of organisms that lived only in the tropics went extinct, compared to 107 that lived outside the tropics, or at all latitudes.

"It's a really striking, surprising pattern," Jablonski said. "And it appears that other animals and plants were playing the same game, even on land," now that previous studies are looked at with new eyes.

The three paleontologists began working on the problem more than a decade ago. The first step involved completing a massive standardization of all living and many fossil bivalve species to ensure their consistent and proper classification.

To accomplish the task, Jablonski churned through stacks of monographs, some dating back to the 19th century, and combed drawer after drawer of bivalve specimens in the Smithsonian Institution and other natural history museums in Chicago, London, Brussels, Belgium; and Leiden, the Netherlands.

The forces behind the flood of evolutionary activity that flows from the tropics remain a mystery. "But now that we have a handle on the dynamics that set up this spectacular planet-sized gradient, we can begin to get at the underlying processes in a whole new way," Jablonski said.

Jablonski, Roy and Valentine will attempt to address this and related questions as they push their analysis further back in time.

Steve Koppes | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>