Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycled paper and compost could both be key tools to control plant disease

26.09.2006
New research by the University of Warwick should have gardeners and commercial growers competing for both recycled paper and organic waste composts. The University’s plant research department, Warwick HRI, is finding that recycled paper based composts are proving to be a major weapon in the fight against a range of plant diseases.

A University of Warwick research team under Professor Ralph Noble has recently shown that the use of composts can reduce the incidence of some important plant diseases by as much as 72%. That research, funded by the UK government’s Waste and Resource Action Programme (WRAP), found that the replacement of around 20% of the volume of soil or peat by compost gave major disease control benefits.

Professor Ralph Noble’s latest research appears to add another ecological benefit. Early results from trials with conifers using compost made from paper waste shows that it is providing much the same disease suppressing effect as green compost made from plant waste. This provides an obvious additional commercial use for the vast amount of paper waste generated by offices and homes.

Professor Noble said: “During paper recycling production a large proportion of the fibres cannot be recycled. The useable fibres are taken out to make new newsprint, and the small fibres are no longer usable, they’re a waste by-product. In Britain, about half a million tonnes of these small, unusable fibres are produced each year. They have a potential use in growing media because they hold a lot of water, just like peat and, being a waste product, they have no other value. Obviously materials that are going to replace peat have to be very cheap or waste by-products. So, paper wastes fit this bill in terms of being cheap and they also hold a lot of water, which is what you need for plant growth”.

The suppression of plant diseases was particularly noticeable when the green and recycled paper composts were added to peat. Peat is used by many growers as it provides a clean and uniform material that is suitable for plant growth – but its very cleanliness makes the plants growing in it susceptible to quickly spreading plant diseases. In contrast compost contains a diversity of microbes that can suppress plant diseases. The ecological benefits of this are obvious: less fungicide has to be applied to plants, less peat is required thus preserving peat bogs, and green waste and paper waste that would otherwise be land-filled is recycled.

Professor Ralph Noble says: “This research shows that the use of such compost could provide clear commercial benefits to growers and ecological benefits for us all. There should be no additional costs involved but we must still test the reliability of using composts for a wide range of commercial crops. Those growers who do change from using 100% peat could literally reap significant rewards”

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>