Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycled paper and compost could both be key tools to control plant disease

26.09.2006
New research by the University of Warwick should have gardeners and commercial growers competing for both recycled paper and organic waste composts. The University’s plant research department, Warwick HRI, is finding that recycled paper based composts are proving to be a major weapon in the fight against a range of plant diseases.

A University of Warwick research team under Professor Ralph Noble has recently shown that the use of composts can reduce the incidence of some important plant diseases by as much as 72%. That research, funded by the UK government’s Waste and Resource Action Programme (WRAP), found that the replacement of around 20% of the volume of soil or peat by compost gave major disease control benefits.

Professor Ralph Noble’s latest research appears to add another ecological benefit. Early results from trials with conifers using compost made from paper waste shows that it is providing much the same disease suppressing effect as green compost made from plant waste. This provides an obvious additional commercial use for the vast amount of paper waste generated by offices and homes.

Professor Noble said: “During paper recycling production a large proportion of the fibres cannot be recycled. The useable fibres are taken out to make new newsprint, and the small fibres are no longer usable, they’re a waste by-product. In Britain, about half a million tonnes of these small, unusable fibres are produced each year. They have a potential use in growing media because they hold a lot of water, just like peat and, being a waste product, they have no other value. Obviously materials that are going to replace peat have to be very cheap or waste by-products. So, paper wastes fit this bill in terms of being cheap and they also hold a lot of water, which is what you need for plant growth”.

The suppression of plant diseases was particularly noticeable when the green and recycled paper composts were added to peat. Peat is used by many growers as it provides a clean and uniform material that is suitable for plant growth – but its very cleanliness makes the plants growing in it susceptible to quickly spreading plant diseases. In contrast compost contains a diversity of microbes that can suppress plant diseases. The ecological benefits of this are obvious: less fungicide has to be applied to plants, less peat is required thus preserving peat bogs, and green waste and paper waste that would otherwise be land-filled is recycled.

Professor Ralph Noble says: “This research shows that the use of such compost could provide clear commercial benefits to growers and ecological benefits for us all. There should be no additional costs involved but we must still test the reliability of using composts for a wide range of commercial crops. Those growers who do change from using 100% peat could literally reap significant rewards”

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>