Common garden plant threatened by climate change

In a study published today in the open access journal BMC Evolutionary Biology, researchers show, using mathematical modelling, that the ideal climate for Cyclamen will become increasingly rare and might have totally disappeared by the 2050’s. Some species of Cyclamen are adaptable enough and could survive climate change, but many would probably disappear.

Chris Yesson and Alastair Culham, from the University of Reading in the UK built mathematical models based on the current distribution of the 21 different species of Cyclamen, in order to predict the impact of climate change on Cyclamen within the next 50 years.

Yesson and Culham identified distinct climatic niches – geographic areas with the ideal climate – for different species of Cyclamen. Most Cyclamen species thrive in a typical Mediterranean climate, with hot, dry summers and cool, wet winters, but many are found in areas with much harsher climatic conditions. Yesson and Culham show that climatic niches are likely to decrease for all species of Cyclamen, and by more than 60% for most species.

Yesson and Culham conclude: “Many of these species are considered to be at high risk of extinction due to climate change.”

Media Contact

Juliette Savin alfa

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors