Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laughing Gas, Forests, Coastal Regions and Global Warming

Sources of nitrous oxide emitted from European forest soils.

Forest ecosystems may produce large volumes of nitrous oxide (N2O), an important greenhouse gas, which affects the atmosphere's chemical and radiative properties. Yet, our understanding of controls on forest N2O emissions is insufficient. This study investigates the quantitative and qualitative relationships between nitrogen-cycling and N2O production in European forests.

The authors conclude that changes in forest composition in response to land use activities and global change may have serious implications for regional budgets of greenhouse gases. It also became clear that accelerated nitrogen inputs predicted for forest ecosystems in Europe may lead to increased greenhouse gas emissions from forest ecosystems.

Read article:

Bacterial carbon sources in coastal sediments: a cross-system analysis based on stable isotope data of biomarkers.

Coastal ecosystems are among the most productive regions in the world ocean. Because of the ample nutrient supplies, the coastal zone accounts for about 20% of oceanic primary production — despite its small geographic extent. Local organic producers span from phytoplankton to bottom-dwelling algae to seagrasses and mangroves. Because of the high rates of sediment accumulation, among other factors, a comparatively large percentage of this new organic matter survives early decay and is buried into the geologic record. Coastal regions also receive large inputs of organic material reworked and transported from surrounding regions by strong currents, including contributions from rivers that drain adjacent land areas. Through the combined effects of high production, large inputs of reworked material, and efficient sequestration, a vast majority of the world’s organic carbon burial occurs in these marginal marine settings.

As the dominant site of oceanic organic carbon burial, the coastal zone factors prominently in most models for short- and long-term carbon cycling and, correspondingly, in scientists’ estimates for CO2 variation in the atmosphere on a variety of time scales. In this paper, Bouillon and Boschker explore this complex organic reservoir through carbon isotope analysis of the many constituents, including large plant fragments and lipid biomarkers that are chemically extracted from the sediments and fingerprint bacterial sources.

Using this approach the authors explored which of the organic components bacteria most easily degrade and thus which have the potential for burial and removal from at least the short-term carbon cycle. Importantly, the authors compared the carbon isotope properties of bacterial biomarkers from a wide range of coastal settings and concluded that the microbes are feeding on a diverse assortment of organic constituents. In fact, at most sites where organic matter is readily available, bacteria show little selectivity in the compounds they decompose.

In light of the previous consensus that such materials should show widely varying biodegradability, this result will certainly raise questions, fuel future work, and ultimately refine our understanding of how carbon flows through its global biogeochemical cycle and impacts the composition of the atmosphere.

Read article:

Dick van der Wateren | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>