Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adding Nitrogen to Ballast Water Can Prevent Corrosion and Alien Invasions

09.01.2002


Aquatic organisms often hitch a ride in the ballast tanks of ocean-crossing ships, ending up in ports far from their native habitats. Upon arrival, these alien species can wreak havoc in their new environs, forcing out native species and incurring huge economic costs. Now a new report published in the journal Biological Conservation suggests that a certain anti-corrosion technique could help prevent such invasions while saving the shipping industry hundreds of thousands of dollars a year.



Corrosion of the ballast tanks of cargo vessels represents a significant cost to the shipping industry. Currently, coats of expensive paint are used to prevent oxidation and rust. The new technique, developed by Japanese scientists, bubbles nitrogen gas through the ballast water to reduce oxygen levels, thereby decreasing oxidation and rust. Noting that many aquatic organisms are also sensitive to oxygen levels, Mario Tamburri of the Monterey Bay Aquarium Research Institute (MBARI) and colleagues mimicked the conditions in these deoxygenated ballast tanks in the laboratory. They subjected three invasive species currently found in U.S waters—an Australian tubeworm, the common European green shore crab and the European zebra mussel—to the oxygen-deprived aquatic conditions and found that most of the larvae died after two or three days. Considering that major ocean crossings take weeks, the researchers suggest all the larvae would have perished in that time.

Though some species—such as anaerobic bacteria or organisms with cyst stages—could survive a transoceanic trip in a nitrogen-treated tank, the new technique still provides an environmentally benign and economically attractive method for reducing the number of potential invaders. "Deoxygenation was seen as too expensive for controlling invasive species in ballast water," Tamburri says, "but our study shows that the anticorrosion benefit of this technique is a strong economic incentive for the shipping industry."

Sarah Graham | Scientific American
Further information:
http://www.sciam.com/news/010802/2.html

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>