Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF Task Force for Clean Solar Energy

13.06.2006
The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs.

The most promising routes to eventual full-scale commercial solar energy conversion directly into fuels were identified at a recent international meeting in Regensburg, sponsored by the European Science Foundation (ESF). An interdisplinary task force was established at this meeting to make the case for substantial investments in these technologies to EU and national government decision makers.

The fundamental issue is that total annual global energy consumption is set to at least double from its current level of 14 TW by 2050, while fossil fuels will start to run out. The use of fossil fuels also produces unacceptable levels of carbon dioxide, causing global warming and has disastrous effects in many areas, such as food production.

Apart from solar energy, the shortfall can only be made up by renewable sources such as wind, along with the other non-fossil, non-renewable fuel source of energy, nuclear. But these will be unable to satisfy the predicted increased energy needs and certainly will not be able to replace fossil fuels entirely, even for electricity production alone. Another problem is that they will not readily yield stored fuels. Without an unexpected breakthrough in electricity storage, there will be a continued need for fuels for around 70% of total global energy requirements, particularly in transportation, manufacturing, and domestic heating. Electricity only accounts for 30% of global energy consumption at present.

However solar energy is plentiful since enough reaches the earth’s surface every hour to meet the world’s annual energy needs. The problem lies in harnessing it. Nature has perfected, in photosynthesis, a highly efficient and flexible means of doing this across a wide variety of scales, from isolated bacterial colonies to large forests.

Substantial progress has been made recently, particularly in Europe, in understanding and mimicking these natural processes, sufficient for scientists to be confident that they could use them to produce fuels on a commercial scale. The focus of research should therefore be on drawing inspiration from biological systems for the creation of both natural and artificial solar energy conversion systems that allow in the long run for a stable and sustainable energy supply. There should also be an aim to reduce the human ecological footprint and thereby increase the global ecological capacity using technology that is environmentally clean, for instance by conversion of carbon dioxide back into fuels in a cyclic process.

The ESF task force is recommending that three parallel avenues of solar energy research for generating clean fuel cycles should be pursued in Europe:

1)Extending and adapting current photovoltaic technology to generate clean fuels directly from solar radiation.

2)Constructing artificial chemical and biomimetic devices mimicking photosynthesis to collect, direct, and apply solar radiation, for example to split water, convert atmospheric carbon dioxide and thus produce various forms of environmentally clean fuels.

3)Tuning natural systems to produce fuels such as hydrogen and methanol directly rather than carbohydrates that are converted into fuels in an indirect and inefficient process.

These three research themes will overlap, and all will exploit fundamental research elucidating the precise molecular mechanism involved in the splitting of water into hydrogen and oxygen in photosynthesis by both plants and oxygenic bacteria. This process, which evolved 2.5 billion years ago, created the conditions for animal life by converting atmospheric carbon dioxide into oxygen and carbohydrates, and also produced all the fossil fuels, which humans are turning back into carbon dioxide at an increasing rate, threatening catastrophic environmental effects. The same process now holds our salvation again.

Although the principal products of photosynthesis in plants and bacteria are carbohydrates, some hydrogen is produced in certain algae and bacteria, providing a basis for genetic modification to increase yields, and for the creation of suitable artificial systems. Furthermore, photosynthesis is capable of generating other chemicals currently made industrially, such as nitrates amino acids, and other compounds of high value for chemical industry. The European research programme will therefore seek to develop systems for converting solar energy directly into such chemicals with much greater efficiency, offering the prospect not just of producing unlimited energy, but also fixing atmospheric carbon dioxide to bring concentrations back down to pre-industrial levels as part of the overall thrust for clean renewable energy.

There are considerable challenges, with the first being to mimick the functioning of natural photosynthetic systems, particularly photosystem II, the enzyme complex in the leaves of plants that splits water into hydrogen and water via a catalyst comprising four manganese atoms along with some calcium. Significant progress has been made recently on this front. Participants at the ESF’s brainstorming conference, describe the solar fuels project as the quest for building the “artificial leaf”. There is growing conviction in Europe and elsewhere that, by 2050, a large proportion of our fuels will come from such “artificial leaves”, and that there is no time to lose starting the crucial enabling research, in order to gain technology leadership in this important future key technology.

Dr. Olaf Kruse | alfa
Further information:
http://www.esf.org/esf_pressarea_page.php?language=0§ion=6&year=2006&newsrelease=117

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>