Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF Task Force for Clean Solar Energy

13.06.2006
The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs.

The most promising routes to eventual full-scale commercial solar energy conversion directly into fuels were identified at a recent international meeting in Regensburg, sponsored by the European Science Foundation (ESF). An interdisplinary task force was established at this meeting to make the case for substantial investments in these technologies to EU and national government decision makers.

The fundamental issue is that total annual global energy consumption is set to at least double from its current level of 14 TW by 2050, while fossil fuels will start to run out. The use of fossil fuels also produces unacceptable levels of carbon dioxide, causing global warming and has disastrous effects in many areas, such as food production.

Apart from solar energy, the shortfall can only be made up by renewable sources such as wind, along with the other non-fossil, non-renewable fuel source of energy, nuclear. But these will be unable to satisfy the predicted increased energy needs and certainly will not be able to replace fossil fuels entirely, even for electricity production alone. Another problem is that they will not readily yield stored fuels. Without an unexpected breakthrough in electricity storage, there will be a continued need for fuels for around 70% of total global energy requirements, particularly in transportation, manufacturing, and domestic heating. Electricity only accounts for 30% of global energy consumption at present.

However solar energy is plentiful since enough reaches the earth’s surface every hour to meet the world’s annual energy needs. The problem lies in harnessing it. Nature has perfected, in photosynthesis, a highly efficient and flexible means of doing this across a wide variety of scales, from isolated bacterial colonies to large forests.

Substantial progress has been made recently, particularly in Europe, in understanding and mimicking these natural processes, sufficient for scientists to be confident that they could use them to produce fuels on a commercial scale. The focus of research should therefore be on drawing inspiration from biological systems for the creation of both natural and artificial solar energy conversion systems that allow in the long run for a stable and sustainable energy supply. There should also be an aim to reduce the human ecological footprint and thereby increase the global ecological capacity using technology that is environmentally clean, for instance by conversion of carbon dioxide back into fuels in a cyclic process.

The ESF task force is recommending that three parallel avenues of solar energy research for generating clean fuel cycles should be pursued in Europe:

1)Extending and adapting current photovoltaic technology to generate clean fuels directly from solar radiation.

2)Constructing artificial chemical and biomimetic devices mimicking photosynthesis to collect, direct, and apply solar radiation, for example to split water, convert atmospheric carbon dioxide and thus produce various forms of environmentally clean fuels.

3)Tuning natural systems to produce fuels such as hydrogen and methanol directly rather than carbohydrates that are converted into fuels in an indirect and inefficient process.

These three research themes will overlap, and all will exploit fundamental research elucidating the precise molecular mechanism involved in the splitting of water into hydrogen and oxygen in photosynthesis by both plants and oxygenic bacteria. This process, which evolved 2.5 billion years ago, created the conditions for animal life by converting atmospheric carbon dioxide into oxygen and carbohydrates, and also produced all the fossil fuels, which humans are turning back into carbon dioxide at an increasing rate, threatening catastrophic environmental effects. The same process now holds our salvation again.

Although the principal products of photosynthesis in plants and bacteria are carbohydrates, some hydrogen is produced in certain algae and bacteria, providing a basis for genetic modification to increase yields, and for the creation of suitable artificial systems. Furthermore, photosynthesis is capable of generating other chemicals currently made industrially, such as nitrates amino acids, and other compounds of high value for chemical industry. The European research programme will therefore seek to develop systems for converting solar energy directly into such chemicals with much greater efficiency, offering the prospect not just of producing unlimited energy, but also fixing atmospheric carbon dioxide to bring concentrations back down to pre-industrial levels as part of the overall thrust for clean renewable energy.

There are considerable challenges, with the first being to mimick the functioning of natural photosynthetic systems, particularly photosystem II, the enzyme complex in the leaves of plants that splits water into hydrogen and water via a catalyst comprising four manganese atoms along with some calcium. Significant progress has been made recently on this front. Participants at the ESF’s brainstorming conference, describe the solar fuels project as the quest for building the “artificial leaf”. There is growing conviction in Europe and elsewhere that, by 2050, a large proportion of our fuels will come from such “artificial leaves”, and that there is no time to lose starting the crucial enabling research, in order to gain technology leadership in this important future key technology.

Dr. Olaf Kruse | alfa
Further information:
http://www.esf.org/esf_pressarea_page.php?language=0§ion=6&year=2006&newsrelease=117

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>