Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of biosciences and environmental research seen in environmental protection, health recommendations and legislation

19.05.2006


Academy-funded biosciences and environmental research projects have many different kinds of scientific and social impacts. Basic research in these fields promotes not only the advancement of science, but also many social objectives. This is clear from a report published by the Academy of Finland on 17 May on the impact of biosciences and environmental research. The report is one of the Academy’s SIGHT2006 publications on the state, level and impact of Finnish scientific research published this year.



The report "The impact of research in biosciences and environmental research" focuses on examining the scientific and social impact of the research through case descriptions. It also looks into researchers’ views on the impact of their own research and on possible obstacles to achieving impact.

The report shows that monitoring impact of research is a long-term commitment. It usually takes a long time before new research knowledge can be seen in legislation or in society. As a whole, the scientific knowledge gained from individual studies, though seeming somewhat fragmented, does in the long term become visible in society and in the actions of individual citizens. This becomes particularly clear when assessing the impact of environmental research results.


Impact of basic research in all shapes and sizes

The report indicates that the impact of basic research varies over time, showing a multiform quality. In terms of generating impact, the process is promoted and accelerated by a clear social need for research results. Impact is evident in environmental research projects in the form of environmental protection, for instance. The environmental case studies also show that the realisation of the impact of research is closely linked to various administrative and political processes as well as economic interests.

Typically, social impact of environmental research is reflected in politics and administration. This is because environmental issues have during the last decade come high up on the agenda in national and international politics, creating a real demand for research knowledge in the field. The Kyoto Protocol and various measures to improve the state of the Baltic Sea have also depended on this knowledge.

On the other hand, it seems we do not know how to fully tap into environmental research knowledge. In future, even the economic importance of environmental knowledge will increase, for example as a result of emission trade administration. An example is a project headed by Academy Research Fellow Jari Liski studying carbon cycles through different methods. The project has had important bearing on climate and forest policy planning. Liski’s team developed a model for carbon cycling in forest soils, which is simple enough to be applied to different kinds of forests and attached to different calculation systems.

Environmental knowledge is also hugely important in the development of human well-being, especially when assessing various environmental risks from the viewpoint of health and well-being. Professor Matti Jantunen’s project that examined the exposure of the working population in the Helsinki region to air pollution provides a good example. The project was part of the international EXPOLIS study that collected a multinational database of air pollution exposure across Europe. Project funding from the Academy of Finland made it possible to analyse and publish database samples and results.

The main objective of the EXPOLIS study was to create a database with easily accessible data to be analysed in decision-making. Collected data helps in determining the causes of exposure problems, as well as its sources, microenvironments and activities. This leads on to further examining the reasons for exposure. Today, the results of the EXPOLIS study influence decision-making and drafting of decisions all over Europe. Even WHO has used the results in its reporting. The National Public Health Institute in Finland has used the material in a study on chemical risks in the environment and in the recommendations that followed.

Impact calls upon development of the research system

The Academy of Finland’s Research Council for Biosciences and Environment considers it important that a broad development effort is undertaken for purposes of promoting the impact of research. "The problems of impact cannot be resolved simply by working to develop research. It is also crucially important to promote the demand for genuine knowledge," the Research Council states. "The development of the European Research Area, Community patenting and knowledge-intensive common markets are also key to achieving greater impact."

"The impact of research in biosciences and environmental research" studies the impacts of Academy funding in food sciences and environmental research funded by the Research Council for Biosciences and Environment, impact of Academy research programmes in general as well as the impact of international programme cooperation.

The report has been published in Finnish in the Academy of Finland’s publication series and may be ordered by e-mail, viestinta@aka.fi. The report is available in PDF format on the Academy’s web pages under Publications (Publication series).

Riitta Tirronen | alfa
Further information:
http://www.aka.fi/eng

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>