Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers say use of switchgrass could solve energy woes

08.05.2006


Alternative energy solutions



Carnegie Mellon University researchers say the use of switchgrass could help break U.S. dependence on fossil fuels and curb costly transportation costs.

"Our report indicates the time is right for America to begin a transition to ethanol derived from switchgrass," said Scott Matthews, an assistant professor in the Civil and Environmental Engineering Department. A 25 percent hike in gas prices at the pump since December adds to the researchers’ call for more ethanol derived from switchgrass, a perennial tall grass used as forage for livestock. Gasoline prices in the U.S. are approaching an average of $3 a gallon. The Carnegie Mellon findings were published in the May 1 issue of the American Chemical Society’s Journal "Environmental Science and Technology."


Matthews, along with W. Michael Griffin, executive director of the Green Design Institute at Carnegie Mellon’s Tepper School of Business, and William R. Morrow, a researcher in the university’s Department of Civil and Environmental Engineering, said using switchgrass as a supplement to corn to make ethanol would help ensure the availability of large volumes of inexpensive ethanol to fuel distributors and consumers.

"We need to be thinking about how we can make and deliver ethanol once our corn and land resources are maxed out. Switchgrass can be that next step," Griffin said.

The Carnegie Mellon report also found that ethanol derived from the dry, brown switchgrass, a cellulosic ethanol, could be made in sufficient quantities to deliver 16 percent ethanol fuel to all consumers in the U.S. Researchers said this would likely lead to significant decreases and stability in the price of gasoline.

"It’s a renewable resource," Griffin said. "Rather than taking a depletable resource from the ground, switchgrass can be grown again and again."

In a recent address, President George W. Bush made a plea for increased focus on renewable energy, mentioning switchgrass by name.

Scientists have long known how to use enzymes and microorganisms to mine the carbon from carbohydrates to make industrial products. But for decades the technology didn’t go very far commercially because fossil fuel – hydrocarbon – was a far cheaper carbon source.

Now that oil prices have climbed roughly 35 percent over the past year, cellulosic fermentation technology is becoming economical.

The United Nations Food and Agricultural Organization said last week that biofuels may supply 25 percent of the world’s energy needs in 15 to 20 years.

"This shift from using hydrocarbons to carbohydrates could revolutionize many industries, including the nation’s huge agricultural sector," Griffin said.

While the Carnegie Mellon researchers think switchgrass can be the source of large volumes of inexpensive ethanol in the future, they are concerned about the potential costs and siting concerns of using pipelines, the most cost-effective way to deliver fuels.

The U.S. has 100,000 miles of pipelines dedicated to transporting petroleum. But Carnegie Mellon researchers say the pipelines can’t be efficiently used because impurities from the petroleum would adversely mix with the ethanol. "In the long run, our goal would be to make petroleum pipelines obsolete; which raises questions about whether ethanol pipelines should ever be built," Matthews said.

To avoid potential issues with pipelines, the authors expect regional solutions to dominate, such as widespread adoption of 85 percent ethanol delivered by rail or truck in the Midwest. American automakers already sell flexible-fuel vehicles (that can run on ethanol or gasoline) that can be purchased in the U.S.

Much of the discussions today about alternatives to gasoline, such as hydrogen, have similar issues related to infrastructure. "Unfortunately, most of the research time and money is being spent on the fuels without adequate consideration to how we will get it to consumers cost-effectively," Griffin said.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>