Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny polyps gorge themselves to survive coral bleaching

27.04.2006


Certain species of coral have surprised researchers by showing an unexpectedly successful approach towards survival when seriously bleached. Their innovative strategy is gluttony.



The discovery, derived from experiments on coral reefs in Hawaii , provides new insights into how these tiny animals face a multitude of environmental threats. The report by Ohio State University researchers is published in the current issue of the British journal Nature.

During the past decade, reports have multiplied of major bleaching events that have damaged, if not destroyed, large portions of the world’s fragile coral reefs. Scientists point to global warming as the cause and the victims are some of the tiniest creatures near the base of the undersea ecosystem.


Despite the apparent sturdiness of coral reefs, the creatures themselves are quite fragile. These tropical organisms survive in a narrow 4-to-6-degree C temperature range centered about 26 degrees C. While the exact temperatures vary with individual species from location to location throughout the tropics, they all must live within that tight range.

When the temperature climbs above that range, even by only two degrees, the result is a bleaching event. Within a two-year window during the 1997-98 El Nino event, 16 percent of the world’s coral reefs sustained serious bleaching due to increases in seawater temperature and the animals died.

“If the rain forests were dying off at this rate, we would all be panicking,” explained Andrea Grottoli, an assistant professor of geological sciences at Ohio State and lead author of the study.

“The problem is that now, with the planet’s climate warming, coral are living closer and closer to their thermal threshold, so it takes less of a warming event than it did before to cause a catastrophe.”

Coral are symbiontic organisms that host one-celled algae within their bodies for mutual benefit. The coral polyp, a relative of jellyfish and anemones, provides a safe home within its cells for the algae while the algae convert sunlight into energy for the polyp.

Grottoli said that when the temperature of the waters around a reef exceeds that upper limit and stays there for more than two weeks or so, it triggers a bleaching event. Once that happens, the symbiotic algae and the brown or green photosynthetic pigments inside are lost. The result is a “bleached” white coral.

“In most cases, corals get 100 percent of their daily metabolic energy needs from the algae. Once they are gone, the coral polyp is left with only two alternatives: Draw energy from stored fats within its body, or eat organic matter and plankton in the surrounding water,” she said.

But what has puzzled Grottoli and other researchers is why in some bleaching events, some corals quickly died off while others close by were able to recover. To answer that, she returned to Hawaii Institute of Marine Biology where she has been studying corals for the past 13 years.

There, she and her collaborators focused on two types of common coral that thrived on the local reefs, Montipora capitata, or “rice” coral, and Porites compressa, “finger” coral. They collected samples of both types and placed them in sets of tanks supplied with natural seawater. Water from the reef was filtered to remove any plankton and flowed through the tanks in the same way it did through their natural environment. In one set of tanks, the water was heated, mimicking the rising temperatures leading to a bleaching event.

After a month, fragments of the coral were gathered from all of the tanks and put through a series of tests measuring energy reserves, photosynthetic rates and growth rates of the coral. The results showed that both Porites and Montipora used up their internal energy reserves. However, after a month of recovery on the reef (where plankton is naturally available) Porites continued to use up its reserves while Montipora had somehow managed to completely replenish them.

To explain that, Grottoli and colleagues closely examined the bleached and healthy corals of the two species on the reef.

“We let them feed for one hour,” Grottoli said. “Then we harvested them all, dissected each polyp and counted how many zooplankton each had eaten, how big they were and what species. That told us how much the coral had eaten.”

Surprisingly, the researchers discovered that while the bleached Porites fed at its normal rate, bleached Montipora had increased its rate of feeding more than five-fold, allowing it not only to survive and repair but also replenish its internal energy reserves.

“We think that this means that coral like Montipora can switch how it gets its food so that it can sustain itself in a bleached state much longer than can corals like Porites,” she said. “While bleached Porites is limited by how much energy reserves it has, bleached Montipora is not.

That’s good news for Montipora and corals like it as the frequency, duration and intensity of warming events increases globally. But Grottoli warns that Montipora’s resilience doesn’t diminish the threat that bleaching events hold for the world’s coral reefs. While it might survive while other species may not, on a global scale it is unlikely to re-colonize areas where less-resilient species died.

“Recent projections suggest that with the current rate of warming, as much as 60 percent of the world’s coral reefs could be lost within the next 10 to 30 years,” she said. “We have a delicately balanced ecosystem that is already highly stressed. It is very much interconnected and so far, we have royally messed it up.”

Along with Grottoli, her graduate student Lisa J. Rodrigues, (now a postdoctoral fellow at Villanova University), and undergraduate student James E. Palardy, (now a PhD student at Brown University), also worked on the project. Support for this research came in part from the Andrew Mellon Foundation and the National Science Foundation.

Andrea Grottoli | EurekAlert!
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>