Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature can help reduce greenhouse gas, but only to a point

11.04.2006


Plants apparently do much less than previously thought to counteract global warming, according to a paper to be published in next week’s online edition of Proceedings of the National Academy of Sciences.



The authors, including Bruce Hungate of Northern Arizona University and lead author Kees-Jan van Groenigen of UC Davis, discovered that plants are limited in their impact on global warming because of their dependence on nitrogen and other trace elements. These elements are essential to photosynthesis, whereby plants remove carbon dioxide, a greenhouse gas, from the air and transfer carbon back into the soil.

"What our paper shows is that in order for soils to lock away more carbon as carbon dioxide rises, there has to be quite a bit of extra nitrogen available--far more than what is normally available in most ecosystems," said Hungate of NAU’s Merriam-Powell Center for Environmental Research.


The paper notes that various plants can pump nitrogen from the air into soils, and some researchers expected rising carbon dioxide to speed up this natural nitrogen pump, providing the nitrogen needed to store soil carbon. However, the research team found that this process, called nitrogen fixation, cannot keep up with increasing carbon dioxide unless other essential nutrients, such as potassium, phosphorus and molybdenum, are added as fertilizers.

The study, which analyzed all published research to date, challenges recent assessments and model projections from the Intergovernmental Panel on Climate Change that anticipated large increases in soil carbon with rising carbon dioxide.

"The discovery implies that future carbon storage by land ecosystems may be smaller than previously thought, and therefore not a very large part of a solution to global warming," Hungate said.

That’s not to say plants are not effective deterrents to global warming. Hungate said about half of the carbon dioxide emitted into the atmosphere is stored, at least temporarily, by the ecosystems on land and oceans.

"We do know that CO2 in the atmosphere would be increasing faster were it not for current carbon storage in the oceans and on land," he said. "But land ecosystems appear to have a limited and diminishing capacity to clean up excess carbon dioxide in the atmosphere. Reducing our reliance on fossil fuels is likely to be far more effective than expecting natural ecosystems to mop up the extra CO2 in the atmosphere."

In addition to Hungate and van Groenigen, the authors of the study are Johan Six, Marie-Anne de Graaff and Chris van Kessel of the Department of Plant Sciences at the University of California Davis, and Nico van Breemen of the Laboratory of Soil Science and Geology at Wageningen University, the Netherlands.

Bruce Hungate | EurekAlert!
Further information:
http://www.nau.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>