Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seagrass is in decline worldwide

29.03.2006


Around the world, seagrass beds – shallow-water ecosystems that are important habitats, food sources, and sediment stabilizers – are in decline, says Frederick Short, research professor of natural resources and marine science at the University of New Hampshire. And as these underwater meadows disappear, so do commercially valuable shellfish and fish, waterfowl and other wildlife, water quality, and erosion prevention.


On the Great Barrier Reef in Australia, Fred Short, UNH research professor of natural resources and marine science, retrieves marked plants for an assessment of seagrass productivity.


UNH professor Fred Short (right) training SeagrassNet team member Adrian Vernon in the seagrass bed near Placencia Village, Belize.



Short, who founded the global monitoring program SeagrassNet in 2001, has been studying eelgrass, a type of seagrass found in the Northern Atlantic, for more than 20 years. While he still conducts research at UNH’s Jackson Estuarine Laboratory on the Great Bay Estuary in Durham, he also collaborates with teams of researchers to monitor seagrass health at 45 sites in 17 countries worldwide.

From the Hudson Bay, where the Cree Nation enlisted him to transplant their diminishing eelgrass beds, to the Pacific Island of Palau, Short’s research has produced distressingly similar findings.


“Almost everywhere we start monitoring seagrass, it’s declining,” he says. And while conclusive global results are not yet available, Short is fairly certain the causes are consistent around the world: human impact.

At a state park in Malaysia, for instance, SeagrassNet has charted a decline since 2001 at both a “pristine” site and a less protected site. Satellite imaging showed researchers that the impact was not due to a global force like climate change, but rather to on-shore logging that had increased the level of water-borne sediments at both sites, decreasing light reaching the bottom, where seagrasses grow.

In remote areas of the Hudson and James Bays in sub-Arctic Canada, where members of the Cree Nation noticed their seagrass beds diminishing, Short noted that the beds were in the plume of fresh water released from a nearby Hydro-Quebec plant. The fresh water influx decreased the salinity so much that the seagrass could no longer survive.

Short and his SeagrassNet colleagues have not ruled out global climate change as a factor in the decline of seagrass beds. Yet so far, he’s found the impacts on seagrass to be far more localized. “Human pollution of the water has been the biggest issue,” he says.

Short likens seagrass beds to a forest on the ocean floor. Among the most productive plant communities on the planet, seagrass beds serve as protective nurseries for juvenile fish and shellfish, a habitat for many marine species, and a feeding ground for predatory fish, waterfowl and large sea creatures like manatees and sea turtles. The root and rhizome system of these flowering plants stabilizes sediments, protecting the coastline from currents and weather-related erosion. Seagrass is an effective filter of nutrients and particulates, and it is the basis of a detrital food chain that feeds fish and shellfish.

When seagrass beds disappear, Short says, the impact is major. A disease outbreak in the 1930s wiped out 90 percent of eelgrass in the North Atlantic. The scallop fishery in the mid-Atlantic disappeared, says Short, and “it’s never really come back.” In Thailand, where SeagrassNet researchers have begun investigating the impact of the 2004 tsunami on seagrass, the beds provide local fishers with significant shellfish. “If the seagrass beds disappear, so do the people’s protein sources,” says Short.

His work in Thailand highlights the reason for the worldwide monitoring program: Prior to SeagrassNet, little was known about seagrass in many locations around the world. With no baseline, assessing the impact of a disturbance like the tsunami is nearly impossible.

Short is looking forward, adding new sites to SeagrassNet around the world and, in New England, researching effective ways of restoring eelgrass to areas where water quality has improved. A site selection model he’s developed helps him and other researchers determine areas that are optimal for restoring diminished eelgrass beds with sod-like patches.

As SeagrassNet researchers continue to input their data into a Web-accessible database, Short is now working on data analysis from the first five years of SeagrassNet monitoring. Meanwhile, he says, he will continue to add new sites to the global monitoring network. “It’s growing just as fast as I can grow it,” he says.

Beth Potier | EurekAlert!
Further information:
http://www.seagrassnet.org
http://www.unh.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>