Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-clean coal – could the price now be right to help fight climate change?

14.03.2006


A new chemical process for removing unwanted minerals from coal could lead to reductions in carbon dioxide emissions from coal-fired power stations.



There is already a way of burning coal in a cleaner, more efficient fashion that would reduce carbon dioxide emissions: this is where the coal is turned into a gas and used to drive a turbine. However, problems with cleaning the coal before it is burnt have made generating electricity in this way very expensive. This new chemical process could make it more commercially viable.

Under development by a University of Nottingham team with EPSRC funding, the new approach involves using chemicals to dissolve unwanted minerals in the coal and then regenerating the chemicals again for re-use. This avoids the expense of using fresh chemicals each time, as well as the need to dispose of them, which can have an environmental impact. By removing unwanted minerals before the coal enters the power plant the new process helps protect the turbines from corrosive particles.


The aim is to cut unwanted minerals in coal from around 10% to below 0.05%, making the coal ‘ultra clean’. Removing these minerals before using the coal to generate power prevents the formation of harmful particles during electricity production. To do this, the team is using specific chemicals to react with the minerals to form soluble products which can be separated from the coal by filtration. This process is known as ‘leaching’. Hydrofluoric acid is the main chemical being tested. The chemicals not only dissolve the minerals but are also easy to regenerate from the reaction products, so they are constantly recycled. It is this aspect that has largely been overlooked in past research, but is virtually essential if chemical coal-cleaning is to be environmentally and commercially viable.

Dr Karen Steel of the School of Chemical, Environmental and Mining Engineering is leading the project. “A lot of research took place in the 1970s and 1980s to see if coal-cleaning was viable,” she says. “The conclusion was that it was too expensive. With the environment high on the global agenda and coal certain to remain a key energy source for decades, it makes sense to see if the perception is still justified today.”

If it proves technically viable and economically competitive, the new process could help ensure that world coal reserves are harnessed with less impact on climate change.

(As part of National Science Week, EPSRC - the Engineering and Physical Sciences Research Council - is highlighting pioneering energy research to assist global efforts to combat climate change.)

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>