Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early detection of oil palm resistance to a devastating fungus

09.03.2006


Oil palm is the most widely produced and consumed vegetable oil in developing countries. With around 3.3 tonnes per hectare per year, it is 7 or 8 times more productive than soybean oil. Palm and soybean are the most widely consumed oils worldwide. Indonesia and Malaysia are the world’s leading palm oil producers, with 12 and 14 million tonnes of oil per year respectively. However, a soil fungus, Ganoderma boninense, which causes basal stem rot in oil palms, devastates thousands of hectares of plantings in Southeast Asia every year.



The Ganoderma problem has been known for decades, but the search for solutions has been considerably hampered by a natural constraint: the disease does not cause symptoms until the palms are at least 7 to 15 years old. Until now, the only control method has centred on cropping techniques, notably ploughing before planting and felling of diseased palms during the growing cycle. However, this has had limited results.

In 2001, trials on palms planted between 1974 and 1993 showed that in Indonesia, the mortality rate differed between the main genetic origins used, and also within those origins. The idea was thus to develop an early test of susceptibility to the disease, with a view to selecting sources of resistance as soon as possible.


To this end, it was necessary to find a means of inoculating the fungus artificially, to ensure rapid symptom expression. This was a tricky business, as disease expression is governed by numerous factors: the aggressiveness of the pathogen strain, the form in which the fungus is inoculated, the time taken to prepare the Ganoderma before inoculation, and certain environmental factors (light, temperature, humidity, etc). Moreover, the aim was to obtain disease symptoms on palms as young as possible, in a uniform, reproducible way. It was also vital to be able to correlate the results with field observations.

Three years on, researchers have risen to the challenge: it is now possible to control inoculation of the fungus, and symptoms can be achieved in palms barely three months old.

The technique developed consists in using a rubber log prepared in a predetermined way. The fungus is grown on the log for 12 to 16 weeks. The log is placed in a pot and covered with soil in which a germinated oil palm seed is planted a standard distance from the log. The inoculated seedlings are placed in semi-natural shade until disease symptoms occur. The method is both quick and easy. As in the field, trials have revealed differences in mortality rate between genetic origins and in aggressiveness between Ganoderma strains.

What remains is to validate the inoculation protocol on a large scale so as to test thousands of seedlings per year and develop a reliable, quick selection tool. Once this has been achieved, which should shortly be the case, it will be possible to supply plantations in Southeast Asia with material with a satisfactory level of resistance to Ganoderma.

As the test can induce the disease both quickly and reliably, it also opens the way for research into the diversity of Ganoderma strains and the efficacy of certain antagonistic fungi or fungicides against Ganoderma. In the long term, the tool should be of use in developing an integrated control method combining cropping practices with genetic, biological and chemical factors.

Frédéric Breton | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=393

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>