Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early detection of oil palm resistance to a devastating fungus

09.03.2006


Oil palm is the most widely produced and consumed vegetable oil in developing countries. With around 3.3 tonnes per hectare per year, it is 7 or 8 times more productive than soybean oil. Palm and soybean are the most widely consumed oils worldwide. Indonesia and Malaysia are the world’s leading palm oil producers, with 12 and 14 million tonnes of oil per year respectively. However, a soil fungus, Ganoderma boninense, which causes basal stem rot in oil palms, devastates thousands of hectares of plantings in Southeast Asia every year.



The Ganoderma problem has been known for decades, but the search for solutions has been considerably hampered by a natural constraint: the disease does not cause symptoms until the palms are at least 7 to 15 years old. Until now, the only control method has centred on cropping techniques, notably ploughing before planting and felling of diseased palms during the growing cycle. However, this has had limited results.

In 2001, trials on palms planted between 1974 and 1993 showed that in Indonesia, the mortality rate differed between the main genetic origins used, and also within those origins. The idea was thus to develop an early test of susceptibility to the disease, with a view to selecting sources of resistance as soon as possible.


To this end, it was necessary to find a means of inoculating the fungus artificially, to ensure rapid symptom expression. This was a tricky business, as disease expression is governed by numerous factors: the aggressiveness of the pathogen strain, the form in which the fungus is inoculated, the time taken to prepare the Ganoderma before inoculation, and certain environmental factors (light, temperature, humidity, etc). Moreover, the aim was to obtain disease symptoms on palms as young as possible, in a uniform, reproducible way. It was also vital to be able to correlate the results with field observations.

Three years on, researchers have risen to the challenge: it is now possible to control inoculation of the fungus, and symptoms can be achieved in palms barely three months old.

The technique developed consists in using a rubber log prepared in a predetermined way. The fungus is grown on the log for 12 to 16 weeks. The log is placed in a pot and covered with soil in which a germinated oil palm seed is planted a standard distance from the log. The inoculated seedlings are placed in semi-natural shade until disease symptoms occur. The method is both quick and easy. As in the field, trials have revealed differences in mortality rate between genetic origins and in aggressiveness between Ganoderma strains.

What remains is to validate the inoculation protocol on a large scale so as to test thousands of seedlings per year and develop a reliable, quick selection tool. Once this has been achieved, which should shortly be the case, it will be possible to supply plantations in Southeast Asia with material with a satisfactory level of resistance to Ganoderma.

As the test can induce the disease both quickly and reliably, it also opens the way for research into the diversity of Ganoderma strains and the efficacy of certain antagonistic fungi or fungicides against Ganoderma. In the long term, the tool should be of use in developing an integrated control method combining cropping practices with genetic, biological and chemical factors.

Frédéric Breton | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=393

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>