Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early detection of oil palm resistance to a devastating fungus


Oil palm is the most widely produced and consumed vegetable oil in developing countries. With around 3.3 tonnes per hectare per year, it is 7 or 8 times more productive than soybean oil. Palm and soybean are the most widely consumed oils worldwide. Indonesia and Malaysia are the world’s leading palm oil producers, with 12 and 14 million tonnes of oil per year respectively. However, a soil fungus, Ganoderma boninense, which causes basal stem rot in oil palms, devastates thousands of hectares of plantings in Southeast Asia every year.

The Ganoderma problem has been known for decades, but the search for solutions has been considerably hampered by a natural constraint: the disease does not cause symptoms until the palms are at least 7 to 15 years old. Until now, the only control method has centred on cropping techniques, notably ploughing before planting and felling of diseased palms during the growing cycle. However, this has had limited results.

In 2001, trials on palms planted between 1974 and 1993 showed that in Indonesia, the mortality rate differed between the main genetic origins used, and also within those origins. The idea was thus to develop an early test of susceptibility to the disease, with a view to selecting sources of resistance as soon as possible.

To this end, it was necessary to find a means of inoculating the fungus artificially, to ensure rapid symptom expression. This was a tricky business, as disease expression is governed by numerous factors: the aggressiveness of the pathogen strain, the form in which the fungus is inoculated, the time taken to prepare the Ganoderma before inoculation, and certain environmental factors (light, temperature, humidity, etc). Moreover, the aim was to obtain disease symptoms on palms as young as possible, in a uniform, reproducible way. It was also vital to be able to correlate the results with field observations.

Three years on, researchers have risen to the challenge: it is now possible to control inoculation of the fungus, and symptoms can be achieved in palms barely three months old.

The technique developed consists in using a rubber log prepared in a predetermined way. The fungus is grown on the log for 12 to 16 weeks. The log is placed in a pot and covered with soil in which a germinated oil palm seed is planted a standard distance from the log. The inoculated seedlings are placed in semi-natural shade until disease symptoms occur. The method is both quick and easy. As in the field, trials have revealed differences in mortality rate between genetic origins and in aggressiveness between Ganoderma strains.

What remains is to validate the inoculation protocol on a large scale so as to test thousands of seedlings per year and develop a reliable, quick selection tool. Once this has been achieved, which should shortly be the case, it will be possible to supply plantations in Southeast Asia with material with a satisfactory level of resistance to Ganoderma.

As the test can induce the disease both quickly and reliably, it also opens the way for research into the diversity of Ganoderma strains and the efficacy of certain antagonistic fungi or fungicides against Ganoderma. In the long term, the tool should be of use in developing an integrated control method combining cropping practices with genetic, biological and chemical factors.

Frédéric Breton | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>