Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Constructal theory predicts global climate patterns in simple way

10.02.2006


A unifying physics principle that describes design in nature predicts, in surprisingly straightforward fashion, the basic features of global circulation and climate, according to researchers at Duke University’s Pratt School of Engineering and the University of Evora in Portugal. They said the new approach to climate may have important implications for forecasting environmental change.

The researchers found that the "constructal theory" can predict the global circulation that determines the boundaries between desert and tropical forests as well as between temperate zones and the poles. Based only on the optimal flow of heat from the sun, the theory also predicts other climate characteristics, such as average wind speed and the average temperature difference between night and day.

The findings may lead to a new understanding of the factors that drive global circulation patterns of the atmosphere and ocean, the researchers said. The theory might also prove useful for predicting the consequences of environmental change -- such as shifts in the atmospheric concentrations of greenhouse gases -- for broad weather patterns, they said.



The team, including Professor Adrian Bejan, of Duke’s Pratt School, who first developed constructal theory, reports its findings in a forthcoming issue of the International Journal of Heat and Mass Transfer (available online Jan. 19, 2006).

Constructal theory is founded on the principle that configurations evolve in time so as to optimize the flow of matter or energy. The theory has been applied previously in many arenas, including the internal structure of the lungs, river currents, and animal locomotion http://www.pratt.duke.edu/news/releases/index.php?story=243.

"We now demonstrate that the constructal theory of organization in nature predicts many characteristics of global circulation -- the grandest of all flow systems on Earth," said Bejan.

"While other very complicated empirical models predict the same basic features, constructal theory does this in a much simpler way," said geophysicist A. Heitor Reis of the University of Evora. "This is an entirely new kind of approach to climate."

Atmospheric circulation is the large-scale movement of air that distributes heat on the surface of the Earth, the researchers explained. These flows develop as air and water moves from hot to cold regions, a result of variation in the heating of the Earth’s surface by the sun.

Atmospheric circulation is characterized by three distinct bands, or convection cells, known as the equatorial Hadley cell, the Ferrel cell and the Polar cell, which drive wind and other air currents (link to illustration, http://en.wikipedia.org/wiki/Image:AtmosphCirc2.png).

Despite annual and daily variation in weather patterns, the basic climate conditions in a particular region remain fairly constant over periods on the order of 30 years, Reis said. It is the boundaries between the planet’s three-tiered global circulation that determines climate patterns and the location of biotic communities, such as deserts, forests and grasslands.

To apply the constructal theory to global climate, the researchers treated Earth as if it were a heat engine that, rather than doing work, dissipates all the power it produces through air and water currents.

"The Earth with its solar heat input, heat rejection, and wheels of atmospheric and oceanic circulation, is a heat engine without shaft," Bejan said. "Its maximized mechanical power cannot be delivered, but is instead destined to dissipate through air and water friction and other forms of heat loss. It produces maximum power, which it then dissipates at a maximum rate."

By applying this analogy, the researchers predicted the main characteristics of global circulation and climate based on very few inputs – namely the temperature of the sun, the solar constant, cloud cover and the Earth’s greenhouse factor. The solar constant refers to the amount of incoming solar radiation measured on the outer surface of Earth’s atmosphere. The greenhouse factor takes into account the concentrations of aerosols and greenhouse gases to determine the amount of heat energy trapped by the atmosphere.

"To my surprise, a simple theory anticipates the latitudinal boundaries of the three zones – the Hadley, Ferrel and Polar cells – which comprise the main global circulation on Earth," Reis said. The theory also predicted the average speed of atmospheric and oceanic flow and the average temperature on Earth, among other climate features, they reported.

A second version of the theory on the daily scale, which included the speed of Earth’s rotation, also predicted the average difference in temperatures between night and day.

The findings may change the understanding of the factors that drive climate patterns. For example, scientists have thought that the circulation zones arise due in part to the rotation of Earth, the researchers said.

"We cast doubt on this idea by showing that the circulation patterns can arise based solely on the optimal structure of global heat flow," Reis said.

The new climate theory may also aid in predicting the consequences of global change, the researchers said.

"If the properties of the atmosphere change as people say they will, we could anticipate what that might mean for global climate," Bejan said.

"By playing with the Earth’s greenhouse factor, we could determine what it would take to get another result," Reis added.

The findings, along with earlier applications of constructal theory, also add support for the theory’s general relevance to natural phenomena. "The accumulation of coincidences between theoretical predictions and natural facts adds weight to the claim that the constructal law is a law of nature," Bejan said.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu
http://www.pratt.duke.edu/news/releases/index.php?story=243
http://en.wikipedia.org/wiki/Image:AtmosphCirc2.png

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>