Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR environmental scientists propose chemical solution to cleaning California’s Salton Sea

03.11.2005


Using alum and a polymer, researchers improve water quality by ninety percent



UC Riverside scientists are able to improve water quality by 90 percent in the rivers flowing into the Salton Sea, the largest lake in California, by using two kinds of water-treatment chemicals that remove phosphorus and silt from the river water.

The researchers investigated the use of alum, a type of salt that has been used to treat phosphorus-rich lakes for decades. They also cleaned water from the rivers flowing into the Salton Sea with polyacrylamide, a new type of polymer used increasingly for reducing sediment loss from agricultural fields.


Results from the study appear in the November/December issue of the Journal of Environmental Quality.

"Removing phosphorus from the inflow reduces algae growth, improves water clarity and decreases the odors common at the lake," said Christopher Amrhein, professor of soil and environmental sciences and the lead author of the paper. "We found that alum and polyacrylamide were highly effective in removing both dissolved phosphorus and suspended sediment in the river waters entering the lake."

Both phosphorus – a fertilizer nutrient that occurs both dissolved in the river water and attached to the sediments suspended in the rivers – and silt contribute to algae growth, odors, low dissolved oxygen and fish-kills in the Salton Sea.

A clean-up of the Salton Sea and consequent development of the surrounding region could help meet the needs of California’s growing population, support commercial growth in the neighboring Imperial and Coachella Valleys and achieve high property values in an area that is easily accessible from cities such as Los Angeles, San Diego and Riverside. An improvement of the environmental conditions in the Salton Sea region also could facilitate the region’s development as a water-sports recreational area.

Currently, state and federal agencies are working to develop a comprehensive restoration plan to return the Salton Sea to its former condition as a high-quality aquatic ecosystem and recreation area. One aspect of this restoration plan will be the management and control of nutrient inputs to the lake.

Inflow water into the Salton Sea by way of the Whitewater River, the New River and the Alamo River contains fertilizer nutrients from agricultural runoff and municipal effluent. These nutrients, particularly phosphorus, deteriorate the quality of the lake’s water by encouraging algae growth.

"Water treatment technology and on-farm management of fertilizers appear to be the best approaches for reducing algae blooms in the Salton Sea," Amrhein said.

Unless measures are taken to clean the Salton Sea, evaporation will result in the sea being too salty for fish, resulting also in the loss of fish-eating birds frequenting an area that is home also to several endangered bird species and visited by millions of waterfowl every year.

Massive fish kills are a common occurrence at the Salton Sea, however, because of low dissolved oxygen, high hydrogen sulfide and ammonia concentrations, high temperatures and an increasing level of salinity.

Due to noxious odors emanating from the Salton Sea, a 32 kilometer-long State Recreation Area on the northeast shore remains under-used.

"The Salton Sea at one time attracted more visitors than Yellowstone National Park," Amrhein said. "If nothing is done, this sea will shrink, exposing lake sediments that could generate dust and worsen air quality. Fish and fish-eating birds would disappear in 10-30 years, and be replaced perhaps by birds that eat brine shrimp. And the sea would continue to smell, which might even get worse. Doing something to address the Salton Sea’s problems on the other hand could greatly stimulate eco-tourism here and boost the economy of this region."

L. B. Mason, C. C. Goodson, M. R. Matsumoto and M. A. Anderson of UCR assisted with the study, which was conducted in 2003-2005. The California State Water Resources Control Board and the Salton Sea Authority provided financial support.

Details of the study:
Phosphorus is contributed to the Salton Sea in both colloidal and dissolved forms. Alum and polyacrylamide are commonly used in municipal wastewater treatment to remove phosphorus and solids, and then the sludge is collected and disposed.

Alum, or aluminum sulfate, is the most widely used coagulant in water treatment. It forms solid amorphous aluminum hydroxide in water, which incorporates soluble phosphorus into its structure. The amorphous aluminum hydroxide, or "floc," combines with the other coagulated suspended solids and settles out.

Polyacrylamide is a synthetic polymer used in soil applications to reduce erosion, promote flocculation (the process by which clays, polymers, or other small charged particles become attached and form a fragile structure, called a floc) and enhance salt removal. Used in wastewater treatment, it enhances coagulation and settling. The polymer acts as a coagulant aid by chemically bridging reactive groups and increasing floc size.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>