Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UV measurement tool aids defense against microbes in tap water

02.11.2005


Researchers at Duke’s Pratt School of Engineering have developed a new way to measure microbes’ exposure to ultraviolet light. The tool could bolster efforts to use UV light to improve the quality and safety of tap water in the U.S.



The novel "microsphere dosimeter" technique is the first direct test of how much UV light microorganisms in fluids have been exposed to, said the researchers -- a critical step in validating the use of UV light treatment for preventing the spread of infection through drinking water. The technique was reported in the Nov. 15, 2005, issue of Environmental Science and Technology by Karl Linden and colleagues.

Linden’s technique uses fluorescent microspheres, which become bleached with exposure to UV light, to mimic pathogenic microbes in water flowing through a UV reactor. By measuring the bleaching of the microspheres, the researchers can obtain precise measures of the full distribution of UV doses that a pathogen may experience -- information critical for gauging the treatment’s capacity to kill disease-causing bacteria or parasites before they reach the public.


The new method comes at a key time as the Environmental Protection Agency (EPA) is set to introduce regulations in December requiring water treatment plants at risk of infection to add UV reactors as an additional line of defense against pathogenic contaminants in the water supply, Linden said.

The research was funded by the American Water Works Association Research Foundation. Linden is an associate professor in Pratt’s Department of Civil and Environmental Engineering.

"The use of UV will certainly lower the public’s risk of microbial pollution because it offers a second barrier of defense," Linden said. UV treatment will also reduce the need for chemical disinfection, he added.

In the U.S., chemical treatment with chlorine remains the primary method for disinfecting drinking water, he said. However, chlorine can produce chemical byproducts that have been linked to cancer. Such byproducts are also coming under stricter regulations in the new EPA rules for drinking water, Linden said.

Chlorine also fails to kill some infectious microbes, such as the protozoan parasite Cryptosporidium. Known as "Crypto," the parasite is a common cause of waterborne disease in the U.S. In 1998, water quality researchers, including Linden, discovered that UV is very effective in killing Crypto, a finding that subsequently became a fundamental basis for the new EPA regulations.

"While chlorine attacks the cell membrane, UV attacks organisms by breaking down their genetic material," Linden said. "Combining the two disinfection methods will better protect against known threats like Crypto and against the next ’bug of the month.’

"The microsphere dosimeter tool we’ve developed is an important step in advancing our understanding of how UV treatment works to disinfect drinking water," he said.

In addition to improvements in the fight against waterborne illness, UV also offers a more environmentally-friendly water treatment method, Linden added. Its implementation will allow a reduction in chlorine use, which will lower the concentration of chemical byproducts found in the water supply and help to meet the new byproduct standards, in addition to the Crypto regulations.

Similar to the more familiar Giardia parasite, which often infects hikers who drink untreated water, Crypto can be transmitted through ingestion of drinking water, person-to-person contact, or other exposure routes, Linden said. Symptoms of the condition include acute diarrhea, abdominal pain, vomiting and fever that can last up to two weeks in healthy adults, but may be chronic or fatal in those with a compromised immune system.

In 1993, a massive outbreak of Crypto transmitted through the public water supply infected an estimated 400,000 people in Milwaukee and led to more than 100 deaths, Linden said.

In the last two decades, Crypto has become recognized as one of the most common causes of waterborne disease among people in the U.S., according to the Centers for Disease Control and Prevention. The parasite may be found in drinking water and recreational water worldwide.

The use of fluorescent microspheres to measure the UV dose distribution will augment earlier devised methods for characterizing UV systems, thereby raising confidence in the reactors’ ability to combat health threats in the water supply, Linden said.

Traditional methods simply test disinfection by spiking a water sample with bacteria or other surrogate microbes and measuring the number present after treatment to infer the delivered UV dose. However, that method provides only the average exposure when, in reality, microorganisms are exposed to a range of UV energy, depending upon the path they take in traveling through the UV system, he said.

"Many microbes display nonlinear responses to UV levels, which can make the average exposure a poor predictor for the actual efficacy of the reactor against different pathogens," Linden said. Microbes also differ in the level of UV required to successfully kill them, he added.

The new findings offer many fundamental and practical advances for UV reactor evaluation and testing, Linden said. The tool also will help validate and improve the accuracy of mathematical models for estimating the efficiency of water treatment with UV.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>