Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UV measurement tool aids defense against microbes in tap water

02.11.2005


Researchers at Duke’s Pratt School of Engineering have developed a new way to measure microbes’ exposure to ultraviolet light. The tool could bolster efforts to use UV light to improve the quality and safety of tap water in the U.S.



The novel "microsphere dosimeter" technique is the first direct test of how much UV light microorganisms in fluids have been exposed to, said the researchers -- a critical step in validating the use of UV light treatment for preventing the spread of infection through drinking water. The technique was reported in the Nov. 15, 2005, issue of Environmental Science and Technology by Karl Linden and colleagues.

Linden’s technique uses fluorescent microspheres, which become bleached with exposure to UV light, to mimic pathogenic microbes in water flowing through a UV reactor. By measuring the bleaching of the microspheres, the researchers can obtain precise measures of the full distribution of UV doses that a pathogen may experience -- information critical for gauging the treatment’s capacity to kill disease-causing bacteria or parasites before they reach the public.


The new method comes at a key time as the Environmental Protection Agency (EPA) is set to introduce regulations in December requiring water treatment plants at risk of infection to add UV reactors as an additional line of defense against pathogenic contaminants in the water supply, Linden said.

The research was funded by the American Water Works Association Research Foundation. Linden is an associate professor in Pratt’s Department of Civil and Environmental Engineering.

"The use of UV will certainly lower the public’s risk of microbial pollution because it offers a second barrier of defense," Linden said. UV treatment will also reduce the need for chemical disinfection, he added.

In the U.S., chemical treatment with chlorine remains the primary method for disinfecting drinking water, he said. However, chlorine can produce chemical byproducts that have been linked to cancer. Such byproducts are also coming under stricter regulations in the new EPA rules for drinking water, Linden said.

Chlorine also fails to kill some infectious microbes, such as the protozoan parasite Cryptosporidium. Known as "Crypto," the parasite is a common cause of waterborne disease in the U.S. In 1998, water quality researchers, including Linden, discovered that UV is very effective in killing Crypto, a finding that subsequently became a fundamental basis for the new EPA regulations.

"While chlorine attacks the cell membrane, UV attacks organisms by breaking down their genetic material," Linden said. "Combining the two disinfection methods will better protect against known threats like Crypto and against the next ’bug of the month.’

"The microsphere dosimeter tool we’ve developed is an important step in advancing our understanding of how UV treatment works to disinfect drinking water," he said.

In addition to improvements in the fight against waterborne illness, UV also offers a more environmentally-friendly water treatment method, Linden added. Its implementation will allow a reduction in chlorine use, which will lower the concentration of chemical byproducts found in the water supply and help to meet the new byproduct standards, in addition to the Crypto regulations.

Similar to the more familiar Giardia parasite, which often infects hikers who drink untreated water, Crypto can be transmitted through ingestion of drinking water, person-to-person contact, or other exposure routes, Linden said. Symptoms of the condition include acute diarrhea, abdominal pain, vomiting and fever that can last up to two weeks in healthy adults, but may be chronic or fatal in those with a compromised immune system.

In 1993, a massive outbreak of Crypto transmitted through the public water supply infected an estimated 400,000 people in Milwaukee and led to more than 100 deaths, Linden said.

In the last two decades, Crypto has become recognized as one of the most common causes of waterborne disease among people in the U.S., according to the Centers for Disease Control and Prevention. The parasite may be found in drinking water and recreational water worldwide.

The use of fluorescent microspheres to measure the UV dose distribution will augment earlier devised methods for characterizing UV systems, thereby raising confidence in the reactors’ ability to combat health threats in the water supply, Linden said.

Traditional methods simply test disinfection by spiking a water sample with bacteria or other surrogate microbes and measuring the number present after treatment to infer the delivered UV dose. However, that method provides only the average exposure when, in reality, microorganisms are exposed to a range of UV energy, depending upon the path they take in traveling through the UV system, he said.

"Many microbes display nonlinear responses to UV levels, which can make the average exposure a poor predictor for the actual efficacy of the reactor against different pathogens," Linden said. Microbes also differ in the level of UV required to successfully kill them, he added.

The new findings offer many fundamental and practical advances for UV reactor evaluation and testing, Linden said. The tool also will help validate and improve the accuracy of mathematical models for estimating the efficiency of water treatment with UV.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>