Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UV measurement tool aids defense against microbes in tap water

02.11.2005


Researchers at Duke’s Pratt School of Engineering have developed a new way to measure microbes’ exposure to ultraviolet light. The tool could bolster efforts to use UV light to improve the quality and safety of tap water in the U.S.



The novel "microsphere dosimeter" technique is the first direct test of how much UV light microorganisms in fluids have been exposed to, said the researchers -- a critical step in validating the use of UV light treatment for preventing the spread of infection through drinking water. The technique was reported in the Nov. 15, 2005, issue of Environmental Science and Technology by Karl Linden and colleagues.

Linden’s technique uses fluorescent microspheres, which become bleached with exposure to UV light, to mimic pathogenic microbes in water flowing through a UV reactor. By measuring the bleaching of the microspheres, the researchers can obtain precise measures of the full distribution of UV doses that a pathogen may experience -- information critical for gauging the treatment’s capacity to kill disease-causing bacteria or parasites before they reach the public.


The new method comes at a key time as the Environmental Protection Agency (EPA) is set to introduce regulations in December requiring water treatment plants at risk of infection to add UV reactors as an additional line of defense against pathogenic contaminants in the water supply, Linden said.

The research was funded by the American Water Works Association Research Foundation. Linden is an associate professor in Pratt’s Department of Civil and Environmental Engineering.

"The use of UV will certainly lower the public’s risk of microbial pollution because it offers a second barrier of defense," Linden said. UV treatment will also reduce the need for chemical disinfection, he added.

In the U.S., chemical treatment with chlorine remains the primary method for disinfecting drinking water, he said. However, chlorine can produce chemical byproducts that have been linked to cancer. Such byproducts are also coming under stricter regulations in the new EPA rules for drinking water, Linden said.

Chlorine also fails to kill some infectious microbes, such as the protozoan parasite Cryptosporidium. Known as "Crypto," the parasite is a common cause of waterborne disease in the U.S. In 1998, water quality researchers, including Linden, discovered that UV is very effective in killing Crypto, a finding that subsequently became a fundamental basis for the new EPA regulations.

"While chlorine attacks the cell membrane, UV attacks organisms by breaking down their genetic material," Linden said. "Combining the two disinfection methods will better protect against known threats like Crypto and against the next ’bug of the month.’

"The microsphere dosimeter tool we’ve developed is an important step in advancing our understanding of how UV treatment works to disinfect drinking water," he said.

In addition to improvements in the fight against waterborne illness, UV also offers a more environmentally-friendly water treatment method, Linden added. Its implementation will allow a reduction in chlorine use, which will lower the concentration of chemical byproducts found in the water supply and help to meet the new byproduct standards, in addition to the Crypto regulations.

Similar to the more familiar Giardia parasite, which often infects hikers who drink untreated water, Crypto can be transmitted through ingestion of drinking water, person-to-person contact, or other exposure routes, Linden said. Symptoms of the condition include acute diarrhea, abdominal pain, vomiting and fever that can last up to two weeks in healthy adults, but may be chronic or fatal in those with a compromised immune system.

In 1993, a massive outbreak of Crypto transmitted through the public water supply infected an estimated 400,000 people in Milwaukee and led to more than 100 deaths, Linden said.

In the last two decades, Crypto has become recognized as one of the most common causes of waterborne disease among people in the U.S., according to the Centers for Disease Control and Prevention. The parasite may be found in drinking water and recreational water worldwide.

The use of fluorescent microspheres to measure the UV dose distribution will augment earlier devised methods for characterizing UV systems, thereby raising confidence in the reactors’ ability to combat health threats in the water supply, Linden said.

Traditional methods simply test disinfection by spiking a water sample with bacteria or other surrogate microbes and measuring the number present after treatment to infer the delivered UV dose. However, that method provides only the average exposure when, in reality, microorganisms are exposed to a range of UV energy, depending upon the path they take in traveling through the UV system, he said.

"Many microbes display nonlinear responses to UV levels, which can make the average exposure a poor predictor for the actual efficacy of the reactor against different pathogens," Linden said. Microbes also differ in the level of UV required to successfully kill them, he added.

The new findings offer many fundamental and practical advances for UV reactor evaluation and testing, Linden said. The tool also will help validate and improve the accuracy of mathematical models for estimating the efficiency of water treatment with UV.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>