Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UV measurement tool aids defense against microbes in tap water


Researchers at Duke’s Pratt School of Engineering have developed a new way to measure microbes’ exposure to ultraviolet light. The tool could bolster efforts to use UV light to improve the quality and safety of tap water in the U.S.

The novel "microsphere dosimeter" technique is the first direct test of how much UV light microorganisms in fluids have been exposed to, said the researchers -- a critical step in validating the use of UV light treatment for preventing the spread of infection through drinking water. The technique was reported in the Nov. 15, 2005, issue of Environmental Science and Technology by Karl Linden and colleagues.

Linden’s technique uses fluorescent microspheres, which become bleached with exposure to UV light, to mimic pathogenic microbes in water flowing through a UV reactor. By measuring the bleaching of the microspheres, the researchers can obtain precise measures of the full distribution of UV doses that a pathogen may experience -- information critical for gauging the treatment’s capacity to kill disease-causing bacteria or parasites before they reach the public.

The new method comes at a key time as the Environmental Protection Agency (EPA) is set to introduce regulations in December requiring water treatment plants at risk of infection to add UV reactors as an additional line of defense against pathogenic contaminants in the water supply, Linden said.

The research was funded by the American Water Works Association Research Foundation. Linden is an associate professor in Pratt’s Department of Civil and Environmental Engineering.

"The use of UV will certainly lower the public’s risk of microbial pollution because it offers a second barrier of defense," Linden said. UV treatment will also reduce the need for chemical disinfection, he added.

In the U.S., chemical treatment with chlorine remains the primary method for disinfecting drinking water, he said. However, chlorine can produce chemical byproducts that have been linked to cancer. Such byproducts are also coming under stricter regulations in the new EPA rules for drinking water, Linden said.

Chlorine also fails to kill some infectious microbes, such as the protozoan parasite Cryptosporidium. Known as "Crypto," the parasite is a common cause of waterborne disease in the U.S. In 1998, water quality researchers, including Linden, discovered that UV is very effective in killing Crypto, a finding that subsequently became a fundamental basis for the new EPA regulations.

"While chlorine attacks the cell membrane, UV attacks organisms by breaking down their genetic material," Linden said. "Combining the two disinfection methods will better protect against known threats like Crypto and against the next ’bug of the month.’

"The microsphere dosimeter tool we’ve developed is an important step in advancing our understanding of how UV treatment works to disinfect drinking water," he said.

In addition to improvements in the fight against waterborne illness, UV also offers a more environmentally-friendly water treatment method, Linden added. Its implementation will allow a reduction in chlorine use, which will lower the concentration of chemical byproducts found in the water supply and help to meet the new byproduct standards, in addition to the Crypto regulations.

Similar to the more familiar Giardia parasite, which often infects hikers who drink untreated water, Crypto can be transmitted through ingestion of drinking water, person-to-person contact, or other exposure routes, Linden said. Symptoms of the condition include acute diarrhea, abdominal pain, vomiting and fever that can last up to two weeks in healthy adults, but may be chronic or fatal in those with a compromised immune system.

In 1993, a massive outbreak of Crypto transmitted through the public water supply infected an estimated 400,000 people in Milwaukee and led to more than 100 deaths, Linden said.

In the last two decades, Crypto has become recognized as one of the most common causes of waterborne disease among people in the U.S., according to the Centers for Disease Control and Prevention. The parasite may be found in drinking water and recreational water worldwide.

The use of fluorescent microspheres to measure the UV dose distribution will augment earlier devised methods for characterizing UV systems, thereby raising confidence in the reactors’ ability to combat health threats in the water supply, Linden said.

Traditional methods simply test disinfection by spiking a water sample with bacteria or other surrogate microbes and measuring the number present after treatment to infer the delivered UV dose. However, that method provides only the average exposure when, in reality, microorganisms are exposed to a range of UV energy, depending upon the path they take in traveling through the UV system, he said.

"Many microbes display nonlinear responses to UV levels, which can make the average exposure a poor predictor for the actual efficacy of the reactor against different pathogens," Linden said. Microbes also differ in the level of UV required to successfully kill them, he added.

The new findings offer many fundamental and practical advances for UV reactor evaluation and testing, Linden said. The tool also will help validate and improve the accuracy of mathematical models for estimating the efficiency of water treatment with UV.

Kendall Morgan | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>