Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link between tropical warming and greenhouse gases stronger than ever, say scientists

14.10.2005


New evidence from climate records of the past provides some of the strongest indications yet of a direct link between tropical warmth and higher greenhouse gas levels, say scientists at the University of California, Santa Barbara. The present steady rise in tropical temperatures due to global warming will have a major impact on global climate and could intensify destructive hurricanes like Katrina and Rita.



The new evidence linking past tropical ocean temperatures to levels of atmospheric greenhouse gases is published in this week’s Science Express, the on-line publication of the journal Science. The authors are Martin Medina-Elizalde, graduate student in the Department of Earth Science and the Interdepartmental Program in Marine Science at UC Santa Barbara, and David Lea, professor in UCSB’s Department of Earth Science and the Marine Science Institute.

The link between increased atmospheric greenhouse gas and global temperatures underlies the theory of global warming, explained the authors. This link can be established by computer climate models or modern observations. Another way to study the link is through paleoclimate observations where past climate is reconstructed through natural archives. This latest study is based on such paleoclimate observations; the scientists analyzed the chemical composition of fossil plankton shells from a deep sea core in the equatorial Pacific.


"The relationship between tropical climate and greenhouse gases is particularly critical because tropical regions receive the highest proportion of solar output and act as a heat engine for the rest of the earth," said Lea.

Modern observations of tropical sea surface temperature indicate a rise of one to two degrees Fahrenheit over the last 50 years, a trend consistent with rising carbon dioxide in the atmosphere due to fossil fuel combustion, according to the authors. The paleoclimate evidence from this new study supports the attribution of the tropical temperature trend to the ever-increasing greenhouse gas burden in the atmosphere.

The research described in this week’s article demonstrates that over the last 1.3 million years, sea surface temperatures in the heart of the western tropical Pacific were controlled by the waxing and waning of the atmospheric greenhouse effect. The largest climate mode shift over this time interval, occurring ~950,000 years before the present (the mid-Pleistocene transition), has previously been attributed to changes in the pattern and frequency of ice sheets.

The new research suggests instead that this shift is due to a change in the oscillation frequency of atmospheric carbon dioxide abundances, a hypothesis that can be directly tested by deep drilling on the Antarctic Ice Cap. If proved correct, this theory would suggest that relatively small, naturally occurring fluctuations in greenhouse gases are the master variable that has driven global climate change on time scales of ten thousand to one million years.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>