Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecologists spawn new use for PIT tags

06.10.2005


Radio frequency technology tracks mixer efficiency



Fishing for a way to assess mixing behavior in treatment tanks for radioactive waste, ecologists at Pacific Northwest National Laboratory came up with an innovative use of radio frequency technology previously used to track migrating fish.

But rather than swimming out to sea implanted in young steelhead and salmon, thousands of passive integrated transponder, or PIT, tags were added to a clay simulant and then whipped around in tests of air sparger and pulse jet mixer equipment in large test tanks and scaled prototypes.


This novel application of the PIT tags provided a means of assessing fluid motion without sampling. Performance results from the tests led to equipment configurations adopted for implementation, said Dean Kurath, an engineer with PNNL’s radiochemical engineering group.

The Hanford Waste Treatment Plant, currently under construction at the Department of Energy’s Hanford Site in Washington state, will be the world’s largest facility for treating highly radioactive waste. The Hanford Site stores 53 million gallons of the waste from past production of plutonium for the nation’s nuclear weapons program in 177 underground tanks.

Waste slurries of various compositions and thicknesses will be mixed in several different tanks in preparation for immobilizing the radioactive waste in glass through a process of vitrification or "glassifying." Mixing the materials will maintain homogeneity in process vessels, limit solids settling and stratification, improve heat transfer and mix in various process solutions. Mixing will also provide for the controlled release of flammable gases generated by the breakdown of organic materials in the waste slurries.

Bechtel National Inc., which is designing and building the Waste Treatment Plant for DOE, enlisted PNNL to help determine the best designs and technologies for mixing the mudlike waste that will be present in some of the approximately 20,000-gallon tanks. Technologies under consideration included pulse jet mixers, air spargers and steady jets generated by recirculation pumps.

In one test of an air sparger, 6,000 PIT tags were added to a tank filled with opaque simulant. Not much bigger than a grain of rice, the PIT tags contain an integrated circuit and an antenna encapsulated in glass. The tag is activated when it passes within range of an antenna that generates an electromagnetic signal. The signal alerts the tag to transmit its unique digital code back to the reader.

The same principle is at work in antitheft devices attached to retail merchandise in department stores and in subcutaneous ID tags for pets. But according to PNNL researcher Rich Brown, this is likely the first time PIT tags have been associated with mixing simulated radioactive waste.

As the sparger went to work mixing waste, the tags were detected using custom-made antennas housed in four vertical wells of PVC pipe placed in the tank around the central sparger. A remote-controlled motorized system moved the antennas up and down within the wells to detect passing PIT tags at varying depths in the tank.

The tags have a signal range of 3 to 4 inches. Movement of the slurry was determined by identifying individual PIT tags during multiple antenna passes. In other tests, the PIT tag antennas were placed around the outside of the vessel.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 4,000 staff, has a $700 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Judith Graybeal | EurekAlert!
Further information:
http://www.pnl.gov/news/2005/05-50.stm
http://www.pnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>