Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid water in East Java threatens biodiversity and local welfare

16.09.2005


She went to investigate the local ecology. Yet during her field work on East Java, Dutch biologist Ansje Löhr became increasingly involved with the local residents, whose harvests failed and whose health was deteriorating due to extremely acidified and polluted river water. Löhr has recently received a second grant to help the Javanese population.



Löhr’s Ph.D. study was part of a larger project on the Ijen Crater Lake on East Java, Indonesia. This crater lake is the largest collection of volcanic water in the world and is extremely acidic (pH 0.1). The acidic water slowly seeps away, and despite dilution by two tributaries in the area the pH of the river water remains very low. This water is used for agricultural and household purposes, which sometimes leads to the rice harvests failing. The very high aluminium content of the water – associated with the acidity – also plays an important role in this. Other elements such as fluorine, in the form of fluoride, form a direct threat for public health. The levels are not only alarmingly high in the river water but also in the groundwater and drinking water wells.

Biodiversity


Within the large project scientists studied the geochemical and hydrological processes as well as the health risks. Ansje Löhr investigated the ecological effects of the acidic water. As well as having a harmful effect on the well-being of the local population, it adversely affects the biodiversity.

Löhr sampled the water at various locations. She observed that the neutral river water contained normal aquatic fauna, but that only mosquito larvae could survive the extremely acidic water. The diversity of microorganisms and algae was also very low. The inhibited breakdown of organic material was another ecological effect measured. Löhr established this using packs containing jati and bamboo leaves, which she suspended in the river at various locations. She determined the loss dry matter over a period of several months.

Solution

According to Löhr, one possible solution for the acidification problem is simply to prevent the crater water from mixing with both neutral rivers. She believes that this could be realised by channelling the flow of acidic water from the crater into the sea, which with its enormous water surface would not suffer any detrimental effects due to this small quantity of acidic water. Löhr wants to hold discussions with local authorities, other researchers and companies in order to arrange such a diversion or another solution. The biologist recently received a dissemination grant from NWO-WOTRO to support this.

Ansje Löhr’s research was funded by NWO-WOTRO.

Ansje Löhr | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_6FRH2J_Eng

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>