Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using satellite observations to investigate ’greening’ trends across Canada and Alaska

06.09.2005


Recent research results from scientists at the Woods Hole Research Center suggest that ’greening’ has begun to decline in the high latitude forested areas of North America. The work, which represents an important advance by incorporating the full extent of the latest satellite observational record to document unique vegetation responses to climatic warming, and then projecting those trends forward in time, is now being extended to circumpolar forests. The research will be highlighted in upcoming issues of Proceedings of the National Academy of Sciences (PNAS) and in Geophysical Research Letters.



Generally, satellite observations of plant growth across the high latitudes of North America -- in Canada and Alaska -- indicate that tundra vegetation experienced an increase in both peak photosynthesis and growing season length, whereas forests experienced a decline in photosynthetic activity between 1981 and 2003. Climatic warming occurred across the entire region, but the change in the forest response indicates that long-term changes may not be predictable from initial, short-term observations. Fire disturbance has also increased with the warming but does not explain the decline in forest photosynthetic activity.

According to Scott Goetz, a senior scientist with the Center, "We believe this is some of the first evidence that high latitude forests may be in decline following an initial growth spurt associated with warming. The reasons for this decline are not certain, but related work points to increased drying as a likely cause. The observed warming and drying are consistent with climate model predictions for the region."


More specifically, Center researchers analyzed trends in a time series of photosynthetic activity across boreal North America over 22 years, from 1981 to 2003. Nearly 15 percent of the region displayed significant trends, of which just over half involved temperature-related increases in growing season, length and photosynthetic intensity, mostly in tundra. In contrast, forest areas unaffected by fire during the study period declined in photosynthetic activity and showed no systematic change in growing season length. Stochastic (random) changes across the time series were predominantly associated with a frequent and increasing fire regime. These trends have implications for the direction of feedbacks to the climate system and emphasize the importance of longer-term synoptic observations of arctic and boreal biomes.

According to Andrew Bunn, a postdoctoral fellow at the Center, "These studies are important because they describe how vast areas of forest are changing and how those changes are related to climate. They are supported by a variety of field studies from other researchers that show rapid changes in vegetation in response to climate variability."

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>