Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

City-scale air pollution measured for the first time

01.09.2005


Seated on the University of Leicester’s Space Research Centre rooftop, the novel instrument captures the sun’s rays and uses them to build up a daily picture, in 3-D, of the city’s air pollution. Just the size of a suitcase, the instrument has nine telescopes that protrude out and point in different directions across the city, collecting the sunlight every minute of every day. The trapped sunlight is bounced by mirrors inside the instrument straight into the mouth of a device that measures its properties. These are then used to work out how much light has been absorbed by air pollutants before reaching the instrument.

Crucially for Leicester, the instrument can measure levels of nitrogen-dioxide in the air, a pollutant produced by traffic and one which poses a particular problem for the air quality in the city centre.

Dr Paul Monks, lead scientist on this project said, "90% of the nitrogen dioxide problem in Leicester is attributable to road traffic. Because our instrument looks at the whole city, it can identify when and where the pollution hotspots will occur during a typical day." He added, "The level of detail we have seen is remarkable. For example, one Saturday we could pin-point the cause of air pollution to a football match, owing to the increased volume of traffic. On hot, sunny days when the air is still, such pollution could pose real health problems to residents".



This technology will be of particular use to all local authorities in the UK who are currently required to review and assess local air quality to ensure objectives for key pollutants are being met. Its development is particularly timely given the predictions for more UK summer heatwaves with future climate change, and their potentially deleterious effect on air quality in urban areas.

"We will certainly be making this instrument available to Leicester City Council to help it design its current air quality action plan" said Dr Paul Monks.

In addition, the instrument has proven such a success and is so compact that the scientists plan to mount it on a satellite next year, where it can keep an eye on global pollution too.

This research forms part of the UK’s Atmospheric Science Strategy, which is supported by NCAS - the Natural Environment Research Council Centres for Atmospheric Science.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>