Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

City-scale air pollution measured for the first time

01.09.2005


Seated on the University of Leicester’s Space Research Centre rooftop, the novel instrument captures the sun’s rays and uses them to build up a daily picture, in 3-D, of the city’s air pollution. Just the size of a suitcase, the instrument has nine telescopes that protrude out and point in different directions across the city, collecting the sunlight every minute of every day. The trapped sunlight is bounced by mirrors inside the instrument straight into the mouth of a device that measures its properties. These are then used to work out how much light has been absorbed by air pollutants before reaching the instrument.

Crucially for Leicester, the instrument can measure levels of nitrogen-dioxide in the air, a pollutant produced by traffic and one which poses a particular problem for the air quality in the city centre.

Dr Paul Monks, lead scientist on this project said, "90% of the nitrogen dioxide problem in Leicester is attributable to road traffic. Because our instrument looks at the whole city, it can identify when and where the pollution hotspots will occur during a typical day." He added, "The level of detail we have seen is remarkable. For example, one Saturday we could pin-point the cause of air pollution to a football match, owing to the increased volume of traffic. On hot, sunny days when the air is still, such pollution could pose real health problems to residents".



This technology will be of particular use to all local authorities in the UK who are currently required to review and assess local air quality to ensure objectives for key pollutants are being met. Its development is particularly timely given the predictions for more UK summer heatwaves with future climate change, and their potentially deleterious effect on air quality in urban areas.

"We will certainly be making this instrument available to Leicester City Council to help it design its current air quality action plan" said Dr Paul Monks.

In addition, the instrument has proven such a success and is so compact that the scientists plan to mount it on a satellite next year, where it can keep an eye on global pollution too.

This research forms part of the UK’s Atmospheric Science Strategy, which is supported by NCAS - the Natural Environment Research Council Centres for Atmospheric Science.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>