Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locusts’ Built-In ‘Surface Analysis’ Ability Directs Them to Fly Overland

12.08.2005


Closeup of locust in tree. (Photo by Asaph Rivlin)


Swarms of millions of locusts have, since Biblical times and until our very own day, been considered a “plague” of major proportions, with the creatures destroying every growing thing in their path.

Until now, it was thought that the directions of these swarms were predominantly directed by prevailing winds. Now, Hebrew University of Jerusalem scientists have shown that a physiological trait of these grasshoppers – namely their polarization vision -- provides them with a built-in source of “surface analysis” – a discovery that could pave the way for efforts to effectively combat this periodic scourge by controlling their natural inclination to fly over land rather than water.

The desert locusts, known scientifically as Schistocerca gregaria, are able to swarm for great distances and in numbers measuring in the millions. During the locust invasion of November 2004 in Israel, it appeared that a swarm came in an easterly direction over Sinai up to the Gulf of Eilat, then turned northward without crossing the water. Only when the swarm reached the northern tip of the gulf did some of them turn again east in the direction of Aqaba and other areas of Jordan, as well as straight north over southern Israel.



This observation led to examination by scientists of the Hebrew University of Jerusalem Department of Evolution, Systematics and Ecology and the Interuniversity Institute for Marine Sciences in Eilat to examine how the locusts were able to identify the gulf water and knew not to fly over it. The research focused on the ability of the locusts to identify polarized light. This is a trait which is lacking in humans but exists among other species, such as fish and insects.

The research was conducted by Dr. Nadav Shashar, who is considered a leading world expert on polarized sight, working with two students, Shai Sabah and Noa Aharoni. The research was published in a recent issue of the journal of the British Royal Society, Biology Letters, as well as in the science news sections of the journals Science and Nature.

“In order to examine if the locusts are using polarized light in determining their flight path, we examined individual locusts’ reactions in situations in which polarized and non-polarized light was reflected from various surfaces. We were able to prove that the locusts avoided flying over areas which were reflecting polarized light -- for example from mirrors or plastic surfaces.”

The sea reflects polarized light much more than dry land (which reflects mainly diffused, non-polarized light), enabling a distinction to be made between the two.

“When the locusts are presented with a situation of choice between surfaces reflecting either polarized or diffused light, they exercise their preference to fly over the (dry land) area of diffused light,” said Dr. Shashar. This is a survival instinct, since if they flew over a body of water, the locusts would be deprived of both nourishment and a place to land and rest.

This research, said Dr. Shashar, could be important in providing information that would be useful in developing means for “deceiving” the locusts and deterring them from flying over agricultural lands and causing the great damage that ensues.

One way of doing so might be through more extensive use of plastic sheeting as shields to create the reflection of the polarized light that the locusts avoid.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>