Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amazon source of 5-year-old river breath

28.07.2005


The rivers of South America’s Amazon basin are "breathing" far harder – cycling the greenhouse gas carbon dioxide more quickly – than anyone realized.



Most of the carbon being exhaled – or outgassed – as carbon dioxide from Amazonian rivers and wetlands has spent a mere 5 years sequestered in the trees, other plants and soils of the surrounding landscape, U.S. and Brazilian researchers report in the July 28 issue of Nature.

It had been hoped that regions such as the nearly 2.4 million-square-mile Amazon River basin – where tropical forests rapidly gulp carbon dioxide during photosynthesis – were holding onto that carbon for decades, even centuries, says Emilio Mayorga, University of Washington oceanographer and lead author of the Nature piece with Anthony Aufdenkampe of the Stroud Water Research Center in Pennsylvania.


As policy makers turn increasingly to carbon-credit trading as a means of grappling with the impacts of human-induced climate change, knowing how much carbon can be stored – and where and for how long – is critical, the authors say.

"Our results were surprising because those who’ve previously made measurements found carbon in the rivers that came from the surrounding forests to be 40 to more than 1,000 years old," Aufdenkampe says. "They assumed that the return of this forest carbon to the atmosphere must be a slow process that offered at least temporary respite from greenhouse effects.

"As part of the largest radiocarbon age survey ever for a single watershed, we show that the enormous amount of carbon dioxide silently being returned to the atmosphere is far younger than carbon being carried downstream," he said. "Previous studies failed to detect the rapid recycling of forest carbon because they never dated the invisible greenhouse gas as it is literally exhaled by the river organisms."

"River breath is much deeper and faster than anyone realized," says Jeff Richey, UW oceanographer and another co-author.

Carbon is carried by rains and groundwater into waterways from soils, decomposing woody debris, leaf litter and other organic matter. Once in waterways it is chewed up by microorganisms, insects and fish. The carbon dioxide they generate quickly returns to the atmosphere, some 500 million tons a year, an amount equal to what is absorbed each year by the Amazonian rainforest.

"Having established that the amount of carbon outgassing is much greater than anyone imagined, the issue then becomes, where does it come from," Mayorga says. "If it’s young, that indicates the carbon pool is dynamic, which could make the system much more reactive to deforestation and climate change."

For example, data from a region of active deforestation in the southern Amazon already shows that the carbon leaving rivers has an identifiable isotopic signature of pasture grasses.

"You’re changing the land use, changing vegetation and other conditions. In terms of what’s being respired, the system is responding fairly quickly," Mayorga says. "Human and natural systems, in turn, will be impacted."

No previous tropical study has used both radioactive carbon-14 and stable carbon-13 isotopes to address these questions. Funding from the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory made the analysis by Mayorga and Aufdenkampe possible. The samples were collected by Richey’s research group and Brazilian scientists on expeditions going back as far as 1991 that were funded by the National Science Foundation, National Aeronautics and Space Administration and the Research Support Foundation for the State of San Paulo (FAPESP), Brazil.

Other co-authors are Paul Quay and the late John Hedges, both UW oceanographers; Caroline Masiello of Rice University; Alex Krusche of the University of São Paulo, Brazil; and Thomas Brown of the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>