Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amazon source of 5-year-old river breath

28.07.2005


The rivers of South America’s Amazon basin are "breathing" far harder – cycling the greenhouse gas carbon dioxide more quickly – than anyone realized.



Most of the carbon being exhaled – or outgassed – as carbon dioxide from Amazonian rivers and wetlands has spent a mere 5 years sequestered in the trees, other plants and soils of the surrounding landscape, U.S. and Brazilian researchers report in the July 28 issue of Nature.

It had been hoped that regions such as the nearly 2.4 million-square-mile Amazon River basin – where tropical forests rapidly gulp carbon dioxide during photosynthesis – were holding onto that carbon for decades, even centuries, says Emilio Mayorga, University of Washington oceanographer and lead author of the Nature piece with Anthony Aufdenkampe of the Stroud Water Research Center in Pennsylvania.


As policy makers turn increasingly to carbon-credit trading as a means of grappling with the impacts of human-induced climate change, knowing how much carbon can be stored – and where and for how long – is critical, the authors say.

"Our results were surprising because those who’ve previously made measurements found carbon in the rivers that came from the surrounding forests to be 40 to more than 1,000 years old," Aufdenkampe says. "They assumed that the return of this forest carbon to the atmosphere must be a slow process that offered at least temporary respite from greenhouse effects.

"As part of the largest radiocarbon age survey ever for a single watershed, we show that the enormous amount of carbon dioxide silently being returned to the atmosphere is far younger than carbon being carried downstream," he said. "Previous studies failed to detect the rapid recycling of forest carbon because they never dated the invisible greenhouse gas as it is literally exhaled by the river organisms."

"River breath is much deeper and faster than anyone realized," says Jeff Richey, UW oceanographer and another co-author.

Carbon is carried by rains and groundwater into waterways from soils, decomposing woody debris, leaf litter and other organic matter. Once in waterways it is chewed up by microorganisms, insects and fish. The carbon dioxide they generate quickly returns to the atmosphere, some 500 million tons a year, an amount equal to what is absorbed each year by the Amazonian rainforest.

"Having established that the amount of carbon outgassing is much greater than anyone imagined, the issue then becomes, where does it come from," Mayorga says. "If it’s young, that indicates the carbon pool is dynamic, which could make the system much more reactive to deforestation and climate change."

For example, data from a region of active deforestation in the southern Amazon already shows that the carbon leaving rivers has an identifiable isotopic signature of pasture grasses.

"You’re changing the land use, changing vegetation and other conditions. In terms of what’s being respired, the system is responding fairly quickly," Mayorga says. "Human and natural systems, in turn, will be impacted."

No previous tropical study has used both radioactive carbon-14 and stable carbon-13 isotopes to address these questions. Funding from the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory made the analysis by Mayorga and Aufdenkampe possible. The samples were collected by Richey’s research group and Brazilian scientists on expeditions going back as far as 1991 that were funded by the National Science Foundation, National Aeronautics and Space Administration and the Research Support Foundation for the State of San Paulo (FAPESP), Brazil.

Other co-authors are Paul Quay and the late John Hedges, both UW oceanographers; Caroline Masiello of Rice University; Alex Krusche of the University of São Paulo, Brazil; and Thomas Brown of the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>