Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved process of drying lumber may save millions

12.07.2005


Watching lumber dry may be as boring as watching paint dry, but soon, the amount of time needed to dry a piece of wood might decrease dramatically, according to Penn State forest resources expert.



Charles Ray, assistant professor of forest resources, devised a process potentially to decrease the amount of time it takes to dry wood products, by combining traditional drying techniques with more modern ones. This process lowers the amount of time needed to dry lumber.

"A computer would essentially read the environment in the kiln for this to work," said the Penn State researcher, who has published a paper on the process in the July issue of Wood and Fibers Science.


Ray’s proposed drying process requires the creation of an artificial intelligence program that analyzes the environment inside a wood drying kiln. The program monitors the kiln and attempts to predict future conditions of the wood and kiln environment and compensates in order to minimize deviation from optimal drying conditions.

Currently, the traditional process of drying wood uses vast amounts of energy. This process also causes warping and other defects in the wood if the drying kiln is not monitored properly and adjusted when necessary.

The traditional process relies on reacting to process changes after they occur. Because it takes a long time to adjust the heat in a drying kiln, a large amount of energy is typically wasted trying to deal with the normal variation within the wood, and to process upsets as they occur.

The AI program will decrease the amount of energy consumed in the drying process and the number of defects in the lumber. By using Ray’s modified drying process, wood producers can reduce the amount of imperfections in the finished product, as well as save millions on energy costs.

The wood product industry is a $250 billion industry in the U.S. Manufacturers spend 10 to 40 percent of their production costs on energy consumption. As much as 80 percent of that energy cost is spent drying the wood. If the process can reduce the amount of energy used in drying wood by 10 percent, then millions of dollars could be saved, according to Ray.

Ray’s drying process decreases warping in the finished wood product because it lessens the temperature fluctuations in a drying kiln. By decreasing energy costs and having a higher quality product, producers will save enough money that eventually these savings could trickle down to the consumers. "It could take up to 25 years for the entire industry to adopt these new drying techniques," said the Penn State researcher.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>