Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rolling the dice on species extinction?

01.07.2005


Climate change and species extinction, two phrases that seem to be on everyone’s mind. But opinions diverge and even if the majority of us can no longer deny climate change – as the signing of the Kyoto agreement by most countries shows – its real dimension and impact on species extinction is still very controversial. But now scientists from Oxford University’s Biodiversity Research Group and colleagues decided to test our capacity to see the future by…going back to the past. And the conclusion is that the most commonly used models to predict species extinction are basically not that good. But not all is bad news.



Where are we going to be in 100 years’ time? The scientific results that reach the public vary so much that we can no longer know what to believe and many times it’s simply our political choices that define our ecological opinion. We are not challenging scientists’ integrity, but how accurate are their forecasting models? The problem is that we cannot go to the future to test their predictions.

But now Miguel B. Araújo, Robert J. Whittaker, Richard J. Ladle and Markus Erhard from the Oxford University’s Biodiversity Research Group, the London’s Natural History Museum Biodiversity Research Group and the Institute for Meteorology and Climate Research in Germany, in a paper just published online in the journal of Global Ecology and Biogeography might have found a solution by approaching the problem in a very different way.


In fact, the team of scientists decided that instead of trying to predict the future why not test the models by going back to the past instead? By using available and very complete population and distribution data on one hundred and sixty one 161 species of British birds during two distinct time periods (period 1 or T1= 1967-1972 and period 2 or T2= 1987-1991), Araújo and colleagues were able to test the accuracy of sixteen of the most widely used models of species evolution. They used the different models to predict what would happen to the British birds’ species from T1 to T2 by using the available species data on T1 together with known climate variation of those twenty years. Subsequently, the results obtained by the different models were compared with the real figures observed in T2. The approach is ingeniously simple but, nevertheless, very informative.

The models tested are climate envelope models. Each species can only survive on a range of particular climates (what is called the species’ climate envelope). The models use this information to predict whether a species will have a tendency to grow or disappear as consequence of a particular climate change.

But when Araújo and colleagues tested the most widely used climate envelope models to predict what would happen to British birds from T1 to T2 , to their surprise, the predicted numbers were totally different from what has happened in reality.

In fact, for 90% of the species tested, the models could not even agree if the species were going to expand or shrink under the given climate scenario. For the remaining 10% of the species, where all the models managed to agree whether the species would shrink or expand, only in half of the predictions the direction was correct. This means that in 5% of the species tested all the sixteen models came to the wrong conclusion by predicting that a species would expand when in fact it shrank, or vice versa.

As one of co-authors, Richard Ladle, says, “It would be just as accurate and a lot less hassle just to toss a coin”.

But not everything is dark; Araújo and colleagues might have found an alternative solution by using what is called a “consensus model”. A consensus model is a mathematical model, which, in this case, finds a projection that reflects the central tendency found by the different climate envelope models used. In fact, Araújo and colleagues show that if the alternative models are used to find a consensus projection, the predictions obtained could become as much as 75% accurate.

But since the consensus projection depends, nevertheless, of other projections what is clear is that scientists need to improve their models’ accuracy in order to have the capacity to predict something that actually resembles reality.

As Richard Ladle says “If we don’t improve our forecasting soon then not only will the climate sceptics find it easy to criticize climate change research, but we will be left making decisions about the future of the planet based on guesswork”.

Catarina Amorim | alfa
Further information:
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1466-822X.2005.00182.x

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>