Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rolling the dice on species extinction?

01.07.2005


Climate change and species extinction, two phrases that seem to be on everyone’s mind. But opinions diverge and even if the majority of us can no longer deny climate change – as the signing of the Kyoto agreement by most countries shows – its real dimension and impact on species extinction is still very controversial. But now scientists from Oxford University’s Biodiversity Research Group and colleagues decided to test our capacity to see the future by…going back to the past. And the conclusion is that the most commonly used models to predict species extinction are basically not that good. But not all is bad news.



Where are we going to be in 100 years’ time? The scientific results that reach the public vary so much that we can no longer know what to believe and many times it’s simply our political choices that define our ecological opinion. We are not challenging scientists’ integrity, but how accurate are their forecasting models? The problem is that we cannot go to the future to test their predictions.

But now Miguel B. Araújo, Robert J. Whittaker, Richard J. Ladle and Markus Erhard from the Oxford University’s Biodiversity Research Group, the London’s Natural History Museum Biodiversity Research Group and the Institute for Meteorology and Climate Research in Germany, in a paper just published online in the journal of Global Ecology and Biogeography might have found a solution by approaching the problem in a very different way.


In fact, the team of scientists decided that instead of trying to predict the future why not test the models by going back to the past instead? By using available and very complete population and distribution data on one hundred and sixty one 161 species of British birds during two distinct time periods (period 1 or T1= 1967-1972 and period 2 or T2= 1987-1991), Araújo and colleagues were able to test the accuracy of sixteen of the most widely used models of species evolution. They used the different models to predict what would happen to the British birds’ species from T1 to T2 by using the available species data on T1 together with known climate variation of those twenty years. Subsequently, the results obtained by the different models were compared with the real figures observed in T2. The approach is ingeniously simple but, nevertheless, very informative.

The models tested are climate envelope models. Each species can only survive on a range of particular climates (what is called the species’ climate envelope). The models use this information to predict whether a species will have a tendency to grow or disappear as consequence of a particular climate change.

But when Araújo and colleagues tested the most widely used climate envelope models to predict what would happen to British birds from T1 to T2 , to their surprise, the predicted numbers were totally different from what has happened in reality.

In fact, for 90% of the species tested, the models could not even agree if the species were going to expand or shrink under the given climate scenario. For the remaining 10% of the species, where all the models managed to agree whether the species would shrink or expand, only in half of the predictions the direction was correct. This means that in 5% of the species tested all the sixteen models came to the wrong conclusion by predicting that a species would expand when in fact it shrank, or vice versa.

As one of co-authors, Richard Ladle, says, “It would be just as accurate and a lot less hassle just to toss a coin”.

But not everything is dark; Araújo and colleagues might have found an alternative solution by using what is called a “consensus model”. A consensus model is a mathematical model, which, in this case, finds a projection that reflects the central tendency found by the different climate envelope models used. In fact, Araújo and colleagues show that if the alternative models are used to find a consensus projection, the predictions obtained could become as much as 75% accurate.

But since the consensus projection depends, nevertheless, of other projections what is clear is that scientists need to improve their models’ accuracy in order to have the capacity to predict something that actually resembles reality.

As Richard Ladle says “If we don’t improve our forecasting soon then not only will the climate sceptics find it easy to criticize climate change research, but we will be left making decisions about the future of the planet based on guesswork”.

Catarina Amorim | alfa
Further information:
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1466-822X.2005.00182.x

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>