Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rolling the dice on species extinction?

01.07.2005


Climate change and species extinction, two phrases that seem to be on everyone’s mind. But opinions diverge and even if the majority of us can no longer deny climate change – as the signing of the Kyoto agreement by most countries shows – its real dimension and impact on species extinction is still very controversial. But now scientists from Oxford University’s Biodiversity Research Group and colleagues decided to test our capacity to see the future by…going back to the past. And the conclusion is that the most commonly used models to predict species extinction are basically not that good. But not all is bad news.



Where are we going to be in 100 years’ time? The scientific results that reach the public vary so much that we can no longer know what to believe and many times it’s simply our political choices that define our ecological opinion. We are not challenging scientists’ integrity, but how accurate are their forecasting models? The problem is that we cannot go to the future to test their predictions.

But now Miguel B. Araújo, Robert J. Whittaker, Richard J. Ladle and Markus Erhard from the Oxford University’s Biodiversity Research Group, the London’s Natural History Museum Biodiversity Research Group and the Institute for Meteorology and Climate Research in Germany, in a paper just published online in the journal of Global Ecology and Biogeography might have found a solution by approaching the problem in a very different way.


In fact, the team of scientists decided that instead of trying to predict the future why not test the models by going back to the past instead? By using available and very complete population and distribution data on one hundred and sixty one 161 species of British birds during two distinct time periods (period 1 or T1= 1967-1972 and period 2 or T2= 1987-1991), Araújo and colleagues were able to test the accuracy of sixteen of the most widely used models of species evolution. They used the different models to predict what would happen to the British birds’ species from T1 to T2 by using the available species data on T1 together with known climate variation of those twenty years. Subsequently, the results obtained by the different models were compared with the real figures observed in T2. The approach is ingeniously simple but, nevertheless, very informative.

The models tested are climate envelope models. Each species can only survive on a range of particular climates (what is called the species’ climate envelope). The models use this information to predict whether a species will have a tendency to grow or disappear as consequence of a particular climate change.

But when Araújo and colleagues tested the most widely used climate envelope models to predict what would happen to British birds from T1 to T2 , to their surprise, the predicted numbers were totally different from what has happened in reality.

In fact, for 90% of the species tested, the models could not even agree if the species were going to expand or shrink under the given climate scenario. For the remaining 10% of the species, where all the models managed to agree whether the species would shrink or expand, only in half of the predictions the direction was correct. This means that in 5% of the species tested all the sixteen models came to the wrong conclusion by predicting that a species would expand when in fact it shrank, or vice versa.

As one of co-authors, Richard Ladle, says, “It would be just as accurate and a lot less hassle just to toss a coin”.

But not everything is dark; Araújo and colleagues might have found an alternative solution by using what is called a “consensus model”. A consensus model is a mathematical model, which, in this case, finds a projection that reflects the central tendency found by the different climate envelope models used. In fact, Araújo and colleagues show that if the alternative models are used to find a consensus projection, the predictions obtained could become as much as 75% accurate.

But since the consensus projection depends, nevertheless, of other projections what is clear is that scientists need to improve their models’ accuracy in order to have the capacity to predict something that actually resembles reality.

As Richard Ladle says “If we don’t improve our forecasting soon then not only will the climate sceptics find it easy to criticize climate change research, but we will be left making decisions about the future of the planet based on guesswork”.

Catarina Amorim | alfa
Further information:
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1466-822X.2005.00182.x

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>