Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceans turning to acid from rise in CO2

30.06.2005


A report issued by the Royal Society in the U.K. sounds the alarm about the world’s oceans. "If CO2 from human activities continues to rise, the oceans will become so acidic by 2100 it could threaten marine life in ways we can’t anticipate," commented Dr. Ken Caldeira, co-author of the report and a newly appointed staff scientist at the Carnegie Institution’s Department of Global Ecology in Stanford, California.* The report on ocean acidification was released today by the Royal Society.



Many scientists view the world’s oceans as an important sink for capturing the human-induced greenhouse gas CO2 and slowing global warming. Marine plants soak up CO2 as they breathe it in and convert it to food during photosynthesis. Organisms also use it to make their skeletons and shells, which eventually form sediments. With the explosion of fossil-fuel burning over the past 200 years, it has been estimated that more than a third of the human-originated greenhouse gas has been absorbed by the oceans. While marine organisms need CO2 to survive, work by Caldeira and colleagues shows that too much CO2 in the ocean could lead to ecological disruption and extinctions in the marine environment.

When CO2 gas dissolves into the ocean it produces carbonic acid, which is corrosive to shells of marine organisms and can interfere with the oxygen supply. If current trends continue, the scientists believe the acidic water could interrupt the process of shell and coral formation and adversely affect other organisms dependent upon corals and shellfish. The acidity could also negatively impact other calcifying organisms, such as phytoplankton and zooplankton, some of the most important players at the base of the planet’s food chain.


"We can predict the magnitude of the acidification based on the evidence that has been collected from the ocean’s surface, the geological and historical record, ocean circulation models, and what’s known about ocean chemistry," continued Caldeira. "What we can’t predict is just what acidic oceans mean to ocean ecology and to Earth’s climate. International and governmental bodies must focus on this area before it’s too late."

The pH (potential of Hydrogen) scale is from 1 to 14, with 7 being neutral. Anything that lowers pH makes the solution more acidic. The scientists calculated that over the past 200 years, the pH of the surface seawater has declined by 0.1 units, which is a 30% increase in hydrogen ions. If emissions of CO2 continue to rise as predicted by the Intergovernmental Panel on Climate Change’s IS92a scenario, there will be another drop in pH by .5 units by 2100, a level that has not existed in the oceans for many millions of years. In addition, the changes in the oceans’ chemistry will reduce their ability to absorb CO2 from the atmosphere, which in turn will accelerate the rate of global warming.

"This report should sound the alarm bells around the world," remarked Chris Field, director of the Carnegie Department of Global Ecology. "It provides compelling evidence for the need for a thorough understanding of the implications of ocean acidification. It also strengthens the case for rapid progress on reducing CO2 emissions."

Dr. Ken Caldeira | EurekAlert!
Further information:
http://www.globalecology.stanford.edu
http://www.royalsoc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>