Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Sculpt Streams to Create Desirable Environmental Outcomes


Ecological engineering professor Marty Matlock has given his students an unusual assignment: He wants them to re-design a river.

This project requires research that co-leaders Matlock and Mike Hanley of the Nature Conservancy believe can be applied to other stream ecosystems nationwide.

“It’s about taking these ecosystems and trying to restore them to meet human needs and desires,” Matlock said. These desires include having clean water, preserving animal habitat, restoring wetlands, and creating spaces for natural beauty and recreation.

Restoring a stream is a complex process involving expertise in geology, ecology, hydraulics, hydrology and chemistry. Fluvial mechanics, or the study of water flow energy, also is crucial to understanding and designing these complex systems.
By studying the historic and current patterns of water flow and asking questions about desirable outcomes, Matlock and his students can re-design a stream to meet human needs in a sustainable fashion. Those needs will vary with each stream. “There’s no one right answer,” Matlock said “A stream can be a thousand things and still be a stream.”

The students in this graduate-level class are working with a landowner along a mile-long stretch of Wharton Creek, a tributary of War Eagle Creek. They have spent Saturdays in and around the creek, taking measurements, determining the dimensions of the stream and the size of the particles in the stream bed. By examining the bedrock and sediment, the erosion and flood plains, they will be able to create a history of what the channel has done.

“We’ve changed the way waters flow over the land,” Matlock said. Streams always have changed within certain boundaries – floods, droughts and other natural processes have shaped those boundaries for millions of years. However, humans have stretched those boundaries past their natural limits with logging, planting non-native crops, grazing, urbanization and other land-use changes. And these changes sometimes have brought about undesirable effects.

Impacted streams have more erosion power, causing land loss; many important species, such as smallmouth bass, have disappeared from native habitats; and more frequent flooding has led to more sediment movement, which adds more fine sediments to the human water supply. On Wharton Creek, for instance, clearing land and mining gravel from sand bars and riffles have changed the water’s flow. The channel has deepened and floods have become more powerful, causing land loss and sweeping sediment downstream towards the lake, carrying excess fertilizer from fields with it. “Humans depend upon water systems to be static. But we do things that make them more dynamic,” Matlock said.

Once the students have determined the past and present dynamics of the stream ecosystem, they will begin designing the restoration process based on the desired outcome for the stream. “You have to answer the question, what do you want the system to do?” Matlock said. “You can never restore streams to what they once were. But some of the things that were, we want back.”

In the case of Wharton Creek, the desired outcome may include restoration of smallmouth bass habitat, minimizing land loss and keeping sediment and gravel from being swept downstream. To do this will require many detailed steps, including restoring sinuosity to the stream, creating riffles and pools, planting native trees and grasses along the river banks and restoring the channel to its natural energy level.

In the course of working to restore streams, Matlock, Hanley and the students work with many people in the community, including the director of environmental compliance for the Beaver Lake Water District, the local director of the Northwest Arkansas Chapter of the Audubon Society, the Arkansas Soil and Water Conservation Commission, the Arkansas Game and Fish Commission, and county and city governments. Indeed, the Nature Conservancy’s Hanley drives up from Mississippi each Thursday to co-teach the class, because he believes it is such an important way to develop the skills of future ecological engineers who will in turn make a difference in communities nationwide.

“If we’re going to live on the landscape in a way that allows future generations to continue to use it, we need to have this kind of community engagement,” Matlock said.

| newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>