Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


No relief for Pacific Northwest drought


It does not appear there will be any major relief this spring or summer from the unusually dry weather that has recently hit the Pacific Northwest, according to new projections of drought severity and fire risk that are based on "general circulation" models that forecast global climate.

The analysis, which was developed by researchers at the U.S.D.A. Forest Service and Oregon State University, also shows that the northwestern part of the country will face forest and rangeland fires this year that could be unusually severe and generally the worst of any area in the nation. Wet weather has recently predominated in the Southwest, Central and Atlantic coast regions of the United States. As a result, 2005 should be a fairly mild fire season in most areas of the nation.

But the same forecasts for a period from now to August show some pockets of drought severity and associated fire risks in southern Florida, Maine and southeastern Arizona. And there is a major problem of historic proportions developing in a six-state region that includes Oregon, Washington, northern California, Idaho, Montana and Wyoming. "We project that the drought severity the northwestern states are now experiencing will only get worse in coming months, and reach levels that were generally seen during the Dust Bowl of the 1930s," said Ronald Neilson, a bioclimatologist with the U.S. Forest Service and professor of botany at OSU.

Severe drought does not automatically translate into major fires, said Neilson and colleague James Lenihan, a fire and ecosystem modeler. "It takes ignition sources such as lightning storms to trigger multiple fires, and that doesn’t always happen," Lenihan said. "But those events are fairly common and, because of that, fires will often occur if vegetation, moisture and climatic conditions are right, which it appears they will be this year."

The latest consensus forecast for fire risk this spring and summer indicate huge forest and rangeland fire outbreaks in northeastern Oregon and southeastern Washington, and more isolated but severe fire potential in forests near Eugene, Roseburg, Bend and the Portland area in Oregon.

Other severe fires are forecast for parts of southwestern Idaho and parts of Montana.

Unlike short-term weather forecasts, these projections are ultimately based on long-term, global climate models and a "general vegetation model" created by researchers from the Forest Service and OSU, including the work of associate professor of geosciences Chris Daly and the OSU Spatial Climate Analysis Service.

These systems have simulated drought and fire in the American West, for instance, fairly accurately backwards in time to 1895, and can also be used to make both near-term and longer projections into the future. They are constantly updated, and now include the latest actual weather information through the end of last January.

In terms of the current projections for a tier of states in the northwestern U.S., it appears the situation is going to go from bad to worse. It bears some similarity to conditions last seen in 2001.

"We use five different global climate models as the underlying basis for our projections, and they are all showing the same thing," Neilson said. "It is going to become extremely dry in many parts of the Pacific Northwest and northern Rocky Mountain states, and the fire risk is going to be significantly higher than normal. There is nothing to indicate a wet spring."

Fire is one obvious implication, the researchers said, but stream flows, fisheries, agriculture, recreation and industry may all be affected.

According to Lenihan, the major storms that inundated southern California and other parts of the Southwest this year have significantly reduced the fire risks in that region, at least for this year. Vegetation growth that occurs during years with heavier rains, however, can sometimes set the stage for major fires in following years if drought resumes.

The models that simulate the droughts and the likelihood of fire are complex and sometimes counter-intuitive, the researchers said, involving such things as vegetation growth, fuel loads, soil moisture, climatic trends and other factors.

"Last year was a pretty severe drought over quite a bit of the nation, but for various reasons our model didn’t really suggest a bad fire year for 2004, and in fact it was a pretty mild year," Lenihan said.

"That was fortunate, because there’s some evidence that the low-risk fire years are more difficult to predict than those with higher risk," he said. "When our models show a very high level of fire, as they do now, they are usually pretty accurate."

Ronald Neilson | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>