Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quieter jet engines - and kinder to the environment

24.02.2005


The jet airliners of the future will be significantly quieter and more environmentally friendly with the help of engineers at The University of Nottingham.



Researchers have been awarded £830,000 (€1.2m) to explore new design methods that could reduce the noise of jet engines while at the same time cutting the amount of carbon dioxide (CO2) they release into the atmosphere. They will play a key part in a new research project called VITAL — which stands for EnVIronmenTALly Friendly Aero Engine.

A team at The University of Nottingham will join a prestigious research programme bringing together the best of European aircraft engine expertise. Of 16 European universities involved — from Sweden, Germany, Austria, France, Italy and the UK — the Nottingham team has won the biggest slice of European Commission funding devoted to universities. Professor Tom Hyde, head of the School of Mechanical, Materials & Manufacturing Engineering, said: "This is a major new development for the research groups in the School and recognises our internationally-leading reputation in aeroengine technology."


VITAL is a four-year programme involving a consortium of 53 partners including all major European engine manufacturers, Airbus and leading European universities. It focuses on the low-pressure parts of the engine, evaluating new engine designs including counter-rotating fans, lightened fans, highly-loaded turbines and turbines with fewer blades. The weight reduction will enable the development of very high bypass ratio engines that reduce noise by between 5dB and 8dB while also decreasing CO2 emissions.

Nottingham’s researchers, who are all from the School of Mechanical, Materials & Manufacturing Engineering, will be working on three major projects with a budget of £830,000 (€1.2m). This is more than the combined awards of all the other three UK universities involved. In order to achieve VITAL’s noise reduction targets, the main low-pressure drive shaft must transmit a higher torque without increasing the size of the shaft or the weight of the engine. The target for Nottingham’s researchers is a 50% increase. Dr Ed Williams, who will be leading this part of the programme, said: "This cannot be achieved with existing technology, so we will be developing new multi-alloy designs and exploring the use of metal matrix composites."

The casing of the engine is its backbone, transferring the thrust from the engine to the aircraft. Nottingham will be developing new automated fabrication techniques for these complex structural components, which are made from titanium alloys. Dr Phil Webb, an expert in robotic welding, said: "These techniques will lead to a 15% weight reduction and a 30% lead time reduction in development and production." Many parts of the casing have to operate at high temperatures and structural integrity is of paramount concern to the designer. Prof Adib Becker said, "We will be developing new methods of predicting the life of these structures using advanced computer modelling of combined creep and fatigue mechanisms."

The total budget for the VITAL programme is €90m, including €50m in funding from the European Commission.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>