Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quieter jet engines - and kinder to the environment

24.02.2005


The jet airliners of the future will be significantly quieter and more environmentally friendly with the help of engineers at The University of Nottingham.



Researchers have been awarded £830,000 (€1.2m) to explore new design methods that could reduce the noise of jet engines while at the same time cutting the amount of carbon dioxide (CO2) they release into the atmosphere. They will play a key part in a new research project called VITAL — which stands for EnVIronmenTALly Friendly Aero Engine.

A team at The University of Nottingham will join a prestigious research programme bringing together the best of European aircraft engine expertise. Of 16 European universities involved — from Sweden, Germany, Austria, France, Italy and the UK — the Nottingham team has won the biggest slice of European Commission funding devoted to universities. Professor Tom Hyde, head of the School of Mechanical, Materials & Manufacturing Engineering, said: "This is a major new development for the research groups in the School and recognises our internationally-leading reputation in aeroengine technology."


VITAL is a four-year programme involving a consortium of 53 partners including all major European engine manufacturers, Airbus and leading European universities. It focuses on the low-pressure parts of the engine, evaluating new engine designs including counter-rotating fans, lightened fans, highly-loaded turbines and turbines with fewer blades. The weight reduction will enable the development of very high bypass ratio engines that reduce noise by between 5dB and 8dB while also decreasing CO2 emissions.

Nottingham’s researchers, who are all from the School of Mechanical, Materials & Manufacturing Engineering, will be working on three major projects with a budget of £830,000 (€1.2m). This is more than the combined awards of all the other three UK universities involved. In order to achieve VITAL’s noise reduction targets, the main low-pressure drive shaft must transmit a higher torque without increasing the size of the shaft or the weight of the engine. The target for Nottingham’s researchers is a 50% increase. Dr Ed Williams, who will be leading this part of the programme, said: "This cannot be achieved with existing technology, so we will be developing new multi-alloy designs and exploring the use of metal matrix composites."

The casing of the engine is its backbone, transferring the thrust from the engine to the aircraft. Nottingham will be developing new automated fabrication techniques for these complex structural components, which are made from titanium alloys. Dr Phil Webb, an expert in robotic welding, said: "These techniques will lead to a 15% weight reduction and a 30% lead time reduction in development and production." Many parts of the casing have to operate at high temperatures and structural integrity is of paramount concern to the designer. Prof Adib Becker said, "We will be developing new methods of predicting the life of these structures using advanced computer modelling of combined creep and fatigue mechanisms."

The total budget for the VITAL programme is €90m, including €50m in funding from the European Commission.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>