Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assumptions of Effects of Rising Carbon Dioxide Probed

15.02.2005


How will rising levels of carbon dioxide influence ecosystems? Scientists have tackled this question numerous times, but none have tested the assumption that a single-abrupt increase in CO2 concentrations will produce changes similar to gradual increases over several decades. UCR scientist part of research team published in the journal Nature.


Photo Caption: mycorrhizal fungi



A paper in the Feb. 10 issue of the journal Nature titled Abrupt Rise in Atmospheric CO2 Overestimates Community Response in a Model Plant-Soil System, takes a closer look at this aspect of climate modeling. University of California, Riverside Professor of Plant Pathology and Biology, Michael Allen is part of the research team that wrote the paper with John N. Klironomos, Shokouh Makvandi-Nejad, Benjamin E. Wolfe, and Jeff R. Powell of the Department of Botany, University of Guelph, Ontario, Canada; and Matthias C. Rilling and Jeff Piotrowski of the Division of Biological Sciences, University of Montana. The work was supported by the Canadian Government, the U. S. Department of Energy, and the U. S. National Science Foundation.

The team observed the response of a mycorrhizal fungal community to CO2 concentrations over a span of six years, which included 21 generations. The fungi, which live around the root systems of plants, are considered a beneficial partner to plants – helping them cope with natural stresses, such as low soil fertility, drought and temperature extremes.


The fungi were exposed to either an abrupt or gradual increase in this atmospheric gas. The group exposed to a slow rise in CO2 concentration showed less of a decline in the number of species per sample – a standard ecological measure of biodiversity – of the fungi than did the group exposed to the abrupt change, but the difference was not significant.

The findings suggest that previous work has overestimated the magnitude of community and ecosystem responses to carbon dioxide changes, the researchers say.

The study fulfills a goal in the larger body of climate change research to predict how ecological systems will function and be structured in the future, when the climate is expected to be significantly different from what it is today. Atmospheric CO2 is expected to continue rising during the next century to concentrations of 550 parts per million, significantly greater than today’s concentrations of almost 370 p.p.m. A major research effort is under way to understand the changes that will occur to population, community and ecosystem structures, and functions in response to these expected CO2 increases.

“Climate change is one of several potential responses of the rapidly escalating atmospheric CO2. Subtle ecosystem responses ranging from reduced plant nutrition to increasing crop pest activity are also postulated,” said Allen. “Our research demonstrates that communities of organisms can adjust to shifting conditions, and points to the need for careful experiments that study dynamics of our environment integrating time if we are to predict what factors will be of concern to the future health of our cropping and wildland ecosystems.”

The University of California, Riverside is a major research institution and a national center for the humanities. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of nearly 17,000, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development. Visit www.ucr.edu or call 951-UCR-NEWS for more information. Media sources are available at http://www.mediasources.ucr.edu/.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>