Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assumptions of Effects of Rising Carbon Dioxide Probed

15.02.2005


How will rising levels of carbon dioxide influence ecosystems? Scientists have tackled this question numerous times, but none have tested the assumption that a single-abrupt increase in CO2 concentrations will produce changes similar to gradual increases over several decades. UCR scientist part of research team published in the journal Nature.


Photo Caption: mycorrhizal fungi



A paper in the Feb. 10 issue of the journal Nature titled Abrupt Rise in Atmospheric CO2 Overestimates Community Response in a Model Plant-Soil System, takes a closer look at this aspect of climate modeling. University of California, Riverside Professor of Plant Pathology and Biology, Michael Allen is part of the research team that wrote the paper with John N. Klironomos, Shokouh Makvandi-Nejad, Benjamin E. Wolfe, and Jeff R. Powell of the Department of Botany, University of Guelph, Ontario, Canada; and Matthias C. Rilling and Jeff Piotrowski of the Division of Biological Sciences, University of Montana. The work was supported by the Canadian Government, the U. S. Department of Energy, and the U. S. National Science Foundation.

The team observed the response of a mycorrhizal fungal community to CO2 concentrations over a span of six years, which included 21 generations. The fungi, which live around the root systems of plants, are considered a beneficial partner to plants – helping them cope with natural stresses, such as low soil fertility, drought and temperature extremes.


The fungi were exposed to either an abrupt or gradual increase in this atmospheric gas. The group exposed to a slow rise in CO2 concentration showed less of a decline in the number of species per sample – a standard ecological measure of biodiversity – of the fungi than did the group exposed to the abrupt change, but the difference was not significant.

The findings suggest that previous work has overestimated the magnitude of community and ecosystem responses to carbon dioxide changes, the researchers say.

The study fulfills a goal in the larger body of climate change research to predict how ecological systems will function and be structured in the future, when the climate is expected to be significantly different from what it is today. Atmospheric CO2 is expected to continue rising during the next century to concentrations of 550 parts per million, significantly greater than today’s concentrations of almost 370 p.p.m. A major research effort is under way to understand the changes that will occur to population, community and ecosystem structures, and functions in response to these expected CO2 increases.

“Climate change is one of several potential responses of the rapidly escalating atmospheric CO2. Subtle ecosystem responses ranging from reduced plant nutrition to increasing crop pest activity are also postulated,” said Allen. “Our research demonstrates that communities of organisms can adjust to shifting conditions, and points to the need for careful experiments that study dynamics of our environment integrating time if we are to predict what factors will be of concern to the future health of our cropping and wildland ecosystems.”

The University of California, Riverside is a major research institution and a national center for the humanities. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of nearly 17,000, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development. Visit www.ucr.edu or call 951-UCR-NEWS for more information. Media sources are available at http://www.mediasources.ucr.edu/.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>