Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting secondary aerosols

04.02.2005


EUREKA project E! 2507 EUROENVIRON COPAP has developed a new detection device that will aid research into global climate change, environmental studies, life-science research and environmental monitoring and improve understanding on aerosols.



“It is now recognised that aerosols play a central role in a range of environmental problems such as respiratory diseases, climate change and decreased visibility,” says Dr Vidmantas Ulevicius, Head of the Environmental Physics and Chemistry Laboratory at the Lithuanian Institute of Physics, the project’s lead partner.

The problem arises because the majority of the mass in fine aerosol particles is not directly emitted but formed through numerous reactions with other gasses in the atmosphere. These reactions are extremely difficult to define as many reactions are short lived and others produce minute particles in the atmosphere. It is these secondary aerosol particles that create environmental problems; these can now be detected thanks to the research in this project.


The sources of each of the major chemical constituents of the aerosols must be known and their role in atmospheric processes must be determined, in order to regulate and reduce their detrimental effects. “In this sense, aerosol science is now at the same level as the measurement of most gaseous pollutants was over a decade ago,” says Ulevicius.

To help increase knowledge and thereby develop efficient abatement strategies, the EUROENVIRON COPAP project designed a new particle counter able to measure the concentration of these small aerosol particles. It can measure particles as small as 5 nm in diameter, in concentrations between 0.01 and 105 particles/cm3.

The new device will provide reliable aerosol data, the lack of which has until now hindered the understanding of the formation of secondary aerosols and evaluation of ways to regulate and prevent environmental damage.

Professor Markku Kulmala, who leads the Physics Department at the University of Helsinki, co ordinated the Finnish academic and commercial partners and supervised the theoretical, calibration and field studies. He says: “EUREKA was crucial. Without it, this work would not have been possible.”

Ulevicius agrees: “EUREKA not only helped in the development of the new instrument but also forged co operation between scientists and commercial companies in Lithuania and Finland.”

The project is set to increase the turnover of the commercial partners - Eltera Ltd in Lithuania and Dekati Ltd in Finland - both of which will manufacture and market some 50 instruments per year.

Julie Sors | alfa
Further information:
http://www.eureka.be/success-stories

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>