Detecting secondary aerosols

EUREKA project E! 2507 EUROENVIRON COPAP has developed a new detection device that will aid research into global climate change, environmental studies, life-science research and environmental monitoring and improve understanding on aerosols.


“It is now recognised that aerosols play a central role in a range of environmental problems such as respiratory diseases, climate change and decreased visibility,” says Dr Vidmantas Ulevicius, Head of the Environmental Physics and Chemistry Laboratory at the Lithuanian Institute of Physics, the project’s lead partner.

The problem arises because the majority of the mass in fine aerosol particles is not directly emitted but formed through numerous reactions with other gasses in the atmosphere. These reactions are extremely difficult to define as many reactions are short lived and others produce minute particles in the atmosphere. It is these secondary aerosol particles that create environmental problems; these can now be detected thanks to the research in this project.

The sources of each of the major chemical constituents of the aerosols must be known and their role in atmospheric processes must be determined, in order to regulate and reduce their detrimental effects. “In this sense, aerosol science is now at the same level as the measurement of most gaseous pollutants was over a decade ago,” says Ulevicius.

To help increase knowledge and thereby develop efficient abatement strategies, the EUROENVIRON COPAP project designed a new particle counter able to measure the concentration of these small aerosol particles. It can measure particles as small as 5 nm in diameter, in concentrations between 0.01 and 105 particles/cm3.

The new device will provide reliable aerosol data, the lack of which has until now hindered the understanding of the formation of secondary aerosols and evaluation of ways to regulate and prevent environmental damage.

Professor Markku Kulmala, who leads the Physics Department at the University of Helsinki, co ordinated the Finnish academic and commercial partners and supervised the theoretical, calibration and field studies. He says: “EUREKA was crucial. Without it, this work would not have been possible.”

Ulevicius agrees: “EUREKA not only helped in the development of the new instrument but also forged co operation between scientists and commercial companies in Lithuania and Finland.”

The project is set to increase the turnover of the commercial partners – Eltera Ltd in Lithuania and Dekati Ltd in Finland – both of which will manufacture and market some 50 instruments per year.

Media Contact

Julie Sors alfa

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors